The Truncation Regularization Method for Identifying the Initial Value on Non-Homogeneous Time-Fractional Diffusion-Wave Equations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Balescu, R., 2007. "V-Langevin equations, continuous time random walks and fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 62-80.
- Fan Yang & Ping Fan & Xiao-Xiao Li & Xin-Yi Ma, 2019. "Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source," Mathematics, MDPI, vol. 7(9), pages 1-13, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.
- Lin, Guoxing, 2018. "General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 86-100.
- Pagnini, Gianni, 2014. "Short note on the emergence of fractional kinetics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 29-34.
- Zheng, Yunying & Zhao, Zhengang & Cui, Yanfen, 2019. "The discontinuous Galerkin finite element approximation of the multi-order fractional initial problems," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 257-269.
- Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
- Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.
- Richard L. Magin & Ervin K. Lenzi, 2021. "Slices of the Anomalous Phase Cube Depict Regions of Sub- and Super-Diffusion in the Fractional Diffusion Equation," Mathematics, MDPI, vol. 9(13), pages 1-29, June.
More about this item
Keywords
time-fractional wave-diffusion equation; identify initial value; truncation regularization method; ill-posed problem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1007-:d:279635. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.