IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i10p983-d277253.html
   My bibliography  Save this article

Normed Interval Space and Its Topological Structure

Author

Listed:
  • Hsien-Chung Wu

    (Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan)

Abstract

Based on the natural vector addition and scalar multiplication, the set of all bounded and closed intervals in R cannot form a vector space. This is mainly because the zero element does not exist. In this paper, we endow a norm to the interval space in which the axioms are almost the same as the axioms of conventional norm by involving the concept of null set. Under this consideration, we shall propose two different concepts of open balls. Based on the open balls, we shall also propose the different types of open sets, which can generate many different topologies.

Suggested Citation

  • Hsien-Chung Wu, 2019. "Normed Interval Space and Its Topological Structure," Mathematics, MDPI, vol. 7(10), pages 1-22, October.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:983-:d:277253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/10/983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/10/983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hsien-Chung Wu, 2011. "Duality Theory in Interval-Valued Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 298-316, August.
    2. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. K. Bhurjee & G. Panda, 2016. "Sufficient optimality conditions and duality theory for interval optimization problem," Annals of Operations Research, Springer, vol. 243(1), pages 335-348, August.
    2. Hsien-Chung Wu, 2019. "Solving Fuzzy Linear Programming Problems with Fuzzy Decision Variables," Mathematics, MDPI, vol. 7(7), pages 1-105, June.
    3. Farzaneh Ferdowsi & Hamid Reza Maleki & Sanaz Rivaz, 2020. "Air refueling tanker allocation based on a multi-objective zero-one integer programming model," Operational Research, Springer, vol. 20(4), pages 1913-1938, December.
    4. Fabiola Roxana Villanueva & Valeriano Antunes Oliveira, 2022. "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 896-923, September.
    5. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    6. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    7. Jinze Song & Yuhao Li & Shuai Liu & Youming Xiong & Weixin Pang & Yufa He & Yaxi Mu, 2022. "Comparison of Machine Learning Algorithms for Sand Production Prediction: An Example for a Gas-Hydrate-Bearing Sand Case," Energies, MDPI, vol. 15(18), pages 1-32, September.
    8. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    9. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    10. Zhe Liu & Shurong Li, 2022. "A numerical method for interval multi-objective mixed-integer optimal control problems based on quantum heuristic algorithm," Annals of Operations Research, Springer, vol. 311(2), pages 853-898, April.
    11. Dapeng Wang & Cong Zhang & Wanqing Jia & Qian Liu & Long Cheng & Huaizhi Yang & Yufeng Luo & Na Kuang, 2022. "A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation," Energies, MDPI, vol. 15(20), pages 1-19, October.
    12. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    13. Debdas Ghosh, 2016. "A Newton method for capturing efficient solutions of interval optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 648-665, September.
    14. Jiang, C. & Zhang, Z.G. & Zhang, Q.F. & Han, X. & Xie, H.C. & Liu, J., 2014. "A new nonlinear interval programming method for uncertain problems with dependent interval variables," European Journal of Operational Research, Elsevier, vol. 238(1), pages 245-253.
    15. Tadeusz Antczak, 2023. "Optimality conditions for invex nonsmooth optimization problems with fuzzy objective functions," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 1-21, March.
    16. Savin Treanţă & Omar Mutab Alsalami, 2024. "On a Weighting Technique for Multiple Cost Optimization Problems with Interval Values," Mathematics, MDPI, vol. 12(15), pages 1-10, July.
    17. B. Japamala Rani & Krishna Kummari, 2023. "Duality for fractional interval-valued optimization problem via convexificator," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 481-500, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:983-:d:277253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.