Real-Time Optimization and Control of Nonlinear Processes Using Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhe Wu & Panagiotis D. Christofides, 2019. "Economic Machine-Learning-Based Predictive Control of Nonlinear Systems," Mathematics, MDPI, vol. 7(6), pages 1-20, June.
- Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohamed Derbeli & Asma Charaabi & Oscar Barambones & Cristian Napole, 2021. "High-Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
- Jianyuan Zhai & Fani Boukouvala, 2022. "Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization," Journal of Global Optimization, Springer, vol. 82(1), pages 21-50, January.
- Helen Durand, 2020. "Responsive Economic Model Predictive Control for Next-Generation Manufacturing," Mathematics, MDPI, vol. 8(2), pages 1-38, February.
- Monica Aureliana Petcu & Liliana Ionescu-Feleaga & Bogdan-Ștefan Ionescu & Dumitru-Florin Moise, 2023. "A Decade for the Mathematics : Bibliometric Analysis of Mathematical Modeling in Economics, Ecology, and Environment," Mathematics, MDPI, vol. 11(2), pages 1-30, January.
- Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
- Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
- Giovanni Cicceri & Giuseppe Inserra & Michele Limosani, 2020. "A Machine Learning Approach to Forecast Economic Recessions—An Italian Case Study," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
- Tsay, Calvin, 2024. "A Quantile Neural Network Framework for Twostage Stochastic Optimization," DES - Working Papers. Statistics and Econometrics. WS 43773, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Fajemisin, Adejuyigbe O. & Maragno, Donato & den Hertog, Dick, 2024. "Optimization with constraint learning: A framework and survey," European Journal of Operational Research, Elsevier, vol. 314(1), pages 1-14.
- Andrea Bacigalupo & Giorgio Gnecco & Marco Lepidi & Luigi Gambarotta, 2020. "Machine-Learning Techniques for the Optimal Design of Acoustic Metamaterials," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 630-653, December.
- Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
- Mohd Shareduwan Mohd Kasihmuddin & Mohd. Asyraf Mansor & Md Faisal Md Basir & Saratha Sathasivam, 2019. "Discrete Mutation Hopfield Neural Network in Propositional Satisfiability," Mathematics, MDPI, vol. 7(11), pages 1-21, November.
- Ding, Yuxing & Liu, Yurong & Wang, Meihong & Du, Wenli & Qian, Feng, 2024. "Heat integration, simultaneous structure and parameter optimisation, and techno-economic evaluation of waste heat recovery systems for petrochemical industry," Energy, Elsevier, vol. 296(C).
- Majidi Nezhad, Meysam & Neshat, Mehdi & Sylaios, Georgios & Astiaso Garcia, Davide, 2024. "Marine energy digitalization digital twin's approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Dominic Yang & Prasanna Balaprakash & Sven Leyffer, 2022. "Modeling design and control problems involving neural network surrogates," Computational Optimization and Applications, Springer, vol. 83(3), pages 759-800, December.
More about this item
Keywords
real-time optimization; nonlinear processes; process control; model predictive control; chemical reactor control; distillation column control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:10:p:890-:d:270106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.