IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i12p295-d186988.html
   My bibliography  Save this article

Evaluating the Predictive Power of Ordination Methods in Ecological Context

Author

Listed:
  • Otto Wildi

    (WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland)

Abstract

When striving for the ordination methods best predicting independently measured site factors, the following questions arise: does the optimal choice depend on the kind of biological community analysed? Are there different ordination methods needed to address different site factors? Simultaneously, I explore alternative similarity approaches of entire ordinations, as well as the role of the transformations applied to the scale used in measuring species performance. The combination of methods and data transformations results in 96 alternative solutions for any one data set. These are compared by a graphical display, that is, an ordination of ordinations. The goodness-of-fit of independently measured site factors is assessed by two alternative methods. The resulting 96 performance values serve as independent variables in trend surfaces overlaid to the ordination of ordinations. The results from two real-world data sets indicate that some ordination methods greatly vary with data transformation. Scores close to a binary scale perform best in almost all ordination methods. Methods that intrinsically constrain the range of species scores, such as principal components analysis based on correlation, correspondence analysis (including its detrended version), nonmetric multidimensional scaling, as well as principal coordinates analysis based on the Bray-Curtis distance, always figure among the most successful methods, irrespective of data used.

Suggested Citation

  • Otto Wildi, 2018. "Evaluating the Predictive Power of Ordination Methods in Ecological Context," Mathematics, MDPI, vol. 6(12), pages 1-14, December.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:12:p:295-:d:186988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/12/295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/12/295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peres-Neto, Pedro R. & Jackson, Donald A. & Somers, Keith M., 2005. "How many principal components? stopping rules for determining the number of non-trivial axes revisited," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 974-997, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    2. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    3. Johann Fuchs & Doris Söhnlein & Brigitte Weber & Enzo Weber, 2018. "Stochastic Forecasting of Labor Supply and Population: An Integrated Model," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 33-58, February.
    4. Hauck, Jana & Suess-Reyes, Julia & Beck, Susanne & Prügl, Reinhard & Frank, Hermann, 2016. "Measuring socioemotional wealth in family-owned and -managed firms: A validation and short form of the FIBER Scale," Journal of Family Business Strategy, Elsevier, vol. 7(3), pages 133-148.
    5. Volker G. Kuppelwieser & Aleksa-Carina Putinas & Marina Bastounis, 2019. "Toward Application and Testing of Measurement Scales and an Example," Sociological Methods & Research, , vol. 48(2), pages 326-349, May.
    6. Leise Kelli de Oliveira & Carla de Oliveira Leite Nascimento & Paulo Renato de Sousa & Paulo Tarso Vilela de Resende & Francisco Gildemir Ferreira da Silva, 2019. "Transport Service Provider Perception of Barriers and Urban Freight Policies in Brazil," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    7. David Juárez-Varón & Victoria Tur-Viñes & Alejandro Rabasa-Dolado & Kristina Polotskaya, 2020. "An Adaptive Machine Learning Methodology Applied to Neuromarketing Analysis: Prediction of Consumer Behaviour Regarding the Key Elements of the Packaging Design of an Educational Toy," Social Sciences, MDPI, vol. 9(9), pages 1-23, September.
    8. repec:jss:jstsof:46:i04 is not listed on IDEAS
    9. repec:dgr:rugsom:14008-eef is not listed on IDEAS
    10. Psaradakis, Zacharias & Vávra, Marián, 2014. "On testing for nonlinearity in multivariate time series," Economics Letters, Elsevier, vol. 125(1), pages 1-4.
    11. Qingyong Wang & Hong-Ning Dai & Hao Wang, 2017. "A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China," Sustainability, MDPI, vol. 9(6), pages 1-17, May.
    12. Paweł Gajewski, 2017. "Sources of Regional Inflation in Poland," Eastern European Economics, Taylor & Francis Journals, vol. 55(3), pages 261-276, May.
    13. Maria Iannario & Rosaria Romano & Domenico Vistocco, 2023. "Dyadic analysis for multi-block data in sport surveys analytics," Annals of Operations Research, Springer, vol. 325(1), pages 701-714, June.
    14. Marian Vavra, 2013. "Testing for linear and Markov switching DSGE models," Working and Discussion Papers WP 3/2013, Research Department, National Bank of Slovakia.
    15. Aaron Fisher & Brian Caffo & Brian Schwartz & Vadim Zipunnikov, 2016. "Fast, Exact Bootstrap Principal Component Analysis for > 1 Million," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 846-860, April.
    16. Roman A. Jandarov & Lianne A. Sheppard & Paul D. Sampson & Adam A. Szpiro, 2017. "A novel principal component analysis for spatially misaligned multivariate air pollution data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 3-28, January.
    17. Shiuan Wan & Yi-Ping Wang, 2020. "The Comparison of Density-Based Clustering Approach among Different Machine Learning Models on Paddy Rice Image Classification of Multispectral and Hyperspectral Image Data," Agriculture, MDPI, vol. 10(10), pages 1-17, October.
    18. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Klaus, Phil & Kuppelwieser, Volker G. & Heinonen, Kristina, 2023. "Quantifying the influence of customer experience on consumer share-of-category," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    20. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    21. Marco Carrer & Renzo Motta & Paola Nola, 2012. "Significant Mean and Extreme Climate Sensitivity of Norway Spruce and Silver Fir at Mid-Elevation Mesic Sites in the Alps," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    22. Kelly P. Murillo & Eugenio M. Rocha, 2020. "Factors Influencing the Economic Behavior of the Food, Beverages and Tobacco Industry: A Case Study for Portuguese Enterprises," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 6(2), pages 99-121, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:12:p:295-:d:186988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.