IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v4y2016i4p59-d79232.html
   My bibliography  Save this article

Effective Potential from the Generalized Time-Dependent Schrödinger Equation

Author

Listed:
  • Trifce Sandev

    (Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
    Radiation Safety Directorate, Partizanski odredi 143, P.O. Box 22, 1020 Skopje, Macedonia)

  • Irina Petreska

    (Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, P.O. Box 162, 1001 Skopje, Macedonia)

  • Ervin K. Lenzi

    (Departamento de Fisica, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti 4748, 84030-900 Ponta Grossa, PR, Brazil)

Abstract

We analyze the generalized time-dependent Schrödinger equation for the force free case, as a generalization, for example, of the standard time-dependent Schrödinger equation, time fractional Schrödinger equation, distributed order time fractional Schrödinger equation, and tempered in time Schrödinger equation. We relate it to the corresponding standard Schrödinger equation with effective potential. The general form of the effective potential that leads to a standard time-dependent Schrodinger equation with the same solution as the generalized one is derived explicitly. Further, effective potentials for several special cases, such as Dirac delta, power-law, Mittag-Leffler and truncated power-law memory kernels, are expressed in terms of the Mittag-Leffler functions. Such complex potentials have been used in the transport simulations in quantum dots, and in simulation of resonant tunneling diode.

Suggested Citation

  • Trifce Sandev & Irina Petreska & Ervin K. Lenzi, 2016. "Effective Potential from the Generalized Time-Dependent Schrödinger Equation," Mathematics, MDPI, vol. 4(4), pages 1-9, September.
  • Handle: RePEc:gam:jmathe:v:4:y:2016:i:4:p:59-:d:79232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/4/4/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/4/4/59/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. N. Narahari Achar & Bradley T. Yale & John W. Hanneken, 2013. "Time Fractional Schrodinger Equation Revisited," Advances in Mathematical Physics, Hindawi, vol. 2013, pages 1-11, July.
    2. Sandev, Trifce & Tomovski, Živorad & Dubbeldam, Johan L.A., 2011. "Generalized Langevin equation with a three parameter Mittag-Leffler noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3627-3636.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lini Qiu & Guitian He & Yun Peng & Huijun Lv & Yujie Tang, 2023. "Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-20, April.
    2. Zu, Chuanjin & Yu, Xiangyang, 2022. "Time fractional Schrödinger equation with a limit based fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Pece Trajanovski & Petar Jolakoski & Ljupco Kocarev & Trifce Sandev, 2023. "Ornstein–Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting," Mathematics, MDPI, vol. 11(16), pages 1-28, August.
    4. Iomin, Alexander, 2023. "Fractional Floquet theory," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Wei, Dongmei & Liu, Hailing & Li, Yongmei & Wan, Linchun & Qin, Sujuan & Wen, Qiaoyan & Gao, Fei, 2024. "Non-Markovian dynamics of time-fractional open quantum systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Trifce Sandev, 2017. "Generalized Langevin Equation and the Prabhakar Derivative," Mathematics, MDPI, vol. 5(4), pages 1-11, November.
    7. Ram K. Saxena & Zivorad Tomovski & Trifce Sandev, 2015. "Analytical Solution of Generalized Space-Time Fractional Cable Equation," Mathematics, MDPI, vol. 3(2), pages 1-18, April.
    8. Alexander Apelblat, 2020. "Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace Transform Approach," Mathematics, MDPI, vol. 8(5), pages 1-22, April.
    9. Baleanu, D. & Shiri, B., 2018. "Collocation methods for fractional differential equations involving non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 136-145.
    10. Wei, Dongmei & Liu, Hailing & Li, Yongmei & Gao, Fei & Qin, Sujuan & Wen, Qiaoyan, 2023. "Quantum speed limit for time-fractional open systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:4:y:2016:i:4:p:59-:d:79232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.