IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/290216.html
   My bibliography  Save this article

Time Fractional Schrodinger Equation Revisited

Author

Listed:
  • B. N. Narahari Achar
  • Bradley T. Yale
  • John W. Hanneken

Abstract

The time fractional Schrodinger equation (TFSE) for a nonrelativistic particle is derived on the basis of the Feynman path integral method by extending it initially to the case of a “free particle” obeying fractional dynamics, obtained by replacing the integer order derivatives with respect to time by those of fractional order. The equations of motion contain quantities which have “fractional” dimensions, chosen such that the “energy” has the correct dimension . The action is defined as a fractional time integral of the Lagrangian, and a “fractional Planck constant” is introduced. The TFSE corresponds to a “subdiffusion” equation with an imaginary fractional diffusion constant and reproduces the regular Schrodinger equation in the limit of integer order. The present work corrects a number of errors in Naber’s work. The correct continuity equation for the probability density is derived and a Green function solution for the case of a “free particle” is obtained. The total probability for a “free” particle is shown to go to zero in the limit of infinite time, in contrast with Naber’s result of a total probability greater than unity. A generalization to the case of a particle moving in a potential is also given.

Suggested Citation

  • B. N. Narahari Achar & Bradley T. Yale & John W. Hanneken, 2013. "Time Fractional Schrodinger Equation Revisited," Advances in Mathematical Physics, Hindawi, vol. 2013, pages 1-11, July.
  • Handle: RePEc:hin:jnlamp:290216
    DOI: 10.1155/2013/290216
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2013/290216.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2013/290216.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/290216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Dongmei & Liu, Hailing & Li, Yongmei & Gao, Fei & Qin, Sujuan & Wen, Qiaoyan, 2023. "Quantum speed limit for time-fractional open systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Trifce Sandev & Irina Petreska & Ervin K. Lenzi, 2016. "Effective Potential from the Generalized Time-Dependent Schrödinger Equation," Mathematics, MDPI, vol. 4(4), pages 1-9, September.
    3. Iomin, Alexander, 2023. "Fractional Floquet theory," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Zu, Chuanjin & Yu, Xiangyang, 2022. "Time fractional Schrödinger equation with a limit based fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Wei, Dongmei & Liu, Hailing & Li, Yongmei & Wan, Linchun & Qin, Sujuan & Wen, Qiaoyan & Gao, Fei, 2024. "Non-Markovian dynamics of time-fractional open quantum systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:290216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.