Author
Listed:
- Ya Zhang
(School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)
- Jinghua Wu
(School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)
- Ruiyang Cao
(School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China)
Abstract
Agent-based automated negotiation aims to enhance decision-making processes by predefining negotiation rules, strategies, and objectives to achieve mutually acceptable agreements. However, most existing research primarily focuses on modeling the formal negotiation phase, while neglecting the critical role of opponent analysis during the pre-negotiation stage. Additionally, the impact of opponent selection and classification on strategy formulation is often overlooked. To address these gaps, we propose a novel automated negotiation framework that enables the agent to use reinforcement learning, enhanced by opponent modeling, for strategy optimization during the negotiation stage. Firstly, we analyze the node and network topology characteristics within an agent-based relational network to uncover the potential strength and types of relationships between negotiating parties. Then, these analysis results are used to inform strategy adjustments through reinforcement learning, where different negotiation strategies are selected based on the opponent’s profile. Specifically, agents’ expectations are adjusted according to relationship strength, ensuring that the expectations of negotiating parties are accurately represented across varying levels of relationship strength. Meanwhile, the relationship classification results are used to adjust the discount factor within a Q-learning negotiation algorithm. Finally, we conducted a series of experiments, and comparative analysis demonstrates that our proposed model outperforms existing negotiation frameworks in terms of negotiation efficiency, utility, and fairness.
Suggested Citation
Ya Zhang & Jinghua Wu & Ruiyang Cao, 2025.
"Optimizing Automated Negotiation: Integrating Opponent Modeling with Reinforcement Learning for Strategy Enhancement,"
Mathematics, MDPI, vol. 13(4), pages 1-30, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:679-:d:1594850
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:679-:d:1594850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.