IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p447-d1579350.html
   My bibliography  Save this article

Bi-Objective Integrated Scheduling of Job Shop Problems and Material Handling Robots with Setup Time

Author

Listed:
  • Runze Liu

    (Macau Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China
    Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai 519031, China)

  • Qi Jia

    (Macau Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China
    Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai 519031, China)

  • Hui Yu

    (Macau Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China
    Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai 519031, China)

  • Kaizhou Gao

    (Macau Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China
    Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai 519031, China)

  • Yaping Fu

    (School of Business, Qingdao University, Qingdao 266071, China)

  • Li Yin

    (Macau Institute of Systems Engineering, Macau University of Science and Technology, Macao 999078, China
    Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai 519031, China)

Abstract

This work investigates the bi-objective integrated scheduling of job shop problems and material handling robots with setup time. The objective is to minimize the maximum completion time and the mean of earliness and tardiness simultaneously. First, a mathematical model is established to describe the problems. Then, different meta-heuristics and their variants are developed to solve the problems, including genetic algorithms, particle swarm optimization, and artificial bee colonies. To improve the performance of algorithms, seven local search operators are proposed. Moreover, two reinforcement learning algorithms, Q-learning and SARSA, are designed to help the algorithm select appropriate local search operators during iterations, further improving the convergence of algorithms. Finally, based on 82 benchmark cases with different scales, the effectiveness of the suggested algorithms is evaluated by comprehensive numerical experiments. The experimental results and discussions show that the genetic algorithm with SARSA is more competitive than its peers.

Suggested Citation

  • Runze Liu & Qi Jia & Hui Yu & Kaizhou Gao & Yaping Fu & Li Yin, 2025. "Bi-Objective Integrated Scheduling of Job Shop Problems and Material Handling Robots with Setup Time," Mathematics, MDPI, vol. 13(3), pages 1-33, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:447-:d:1579350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andy Ham, 2021. "Transfer-robot task scheduling in job shop," International Journal of Production Research, Taylor & Francis Journals, vol. 59(3), pages 813-823, February.
    2. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    3. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    4. B. J. Lageweg & J. K. Lenstra & A. H. G. Rinnooy Kan, 1977. "Job-Shop Scheduling by Implicit Enumeration," Management Science, INFORMS, vol. 24(4), pages 441-450, December.
    5. Lacomme, Philippe & Larabi, Mohand & Tchernev, Nikolay, 2013. "Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Economics, Elsevier, vol. 143(1), pages 24-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    2. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    3. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    4. Ouenniche, J. & Bertrand, J. W. M., 2001. "The finite horizon economic lot sizing problem in job shops: : the multiple cycle approach," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 49-61, December.
    5. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    6. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    7. Dalila B. M. M. Fontes & S. Mahdi Homayouni & Mauricio G. C. Resende, 2022. "Job-shop scheduling-joint consideration of production, transport, and storage/retrieval systems," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1284-1322, September.
    8. Valls, Vicente & Angeles Perez, M. & Sacramento Quintanilla, M., 1998. "A tabu search approach to machine scheduling," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 277-300, April.
    9. Pannee Suanpang & Pitchaya Jamjuntr & Kittisak Jermsittiparsert & Phuripoj Kaewyong, 2022. "Tourism Service Scheduling in Smart City Based on Hybrid Genetic Algorithm Simulated Annealing Algorithm," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    10. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    11. Golenko-Ginzburg, Dimitri & Kesler, Shmuel & Landsman, Zinoviy, 1995. "Industrial job-shop scheduling with random operations and different priorities," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 185-195, August.
    12. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    13. Jianxun Li & Wenjie Cheng & Kin Keung Lai & Bhagwat Ram, 2022. "Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    14. Goncalves, Jose Fernando & de Magalhaes Mendes, Jorge Jose & Resende, Mauricio G. C., 2005. "A hybrid genetic algorithm for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 167(1), pages 77-95, November.
    15. Hamed Piroozfard & Kuan Yew Wong & Adnan Hassan, 2016. "A Hybrid Genetic Algorithm with a Knowledge-Based Operator for Solving the Job Shop Scheduling Problems," Journal of Optimization, Hindawi, vol. 2016, pages 1-13, April.
    16. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    17. Vipul Jain & Ignacio E. Grossmann, 2001. "Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 258-276, November.
    18. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    19. James T. Lin & Chun-Chih Chiu & Edward Huang & Hung-Ming Chen, 2018. "A Multi-Fidelity Model Approach for Simultaneous Scheduling of Machines and Vehicles in Flexible Manufacturing Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
    20. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:447-:d:1579350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.