IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1236-d1379074.html
   My bibliography  Save this article

The Stability of Solutions of the Variable-Order Fractional Optimal Control Model for the COVID-19 Epidemic in Discrete Time

Author

Listed:
  • Meriem Boukhobza

    (Department of Mathematics and Informatics, University of Mostaganem, Mostaganem 27000, Algeria)

  • Amar Debbouche

    (Department of Mathematics, Guelma University, Guelma 24000, Algeria)

  • Lingeshwaran Shangerganesh

    (Department of Applied Sciences, National Institute of Technology Goa, Ponda 403401, Goa, India)

  • Juan J. Nieto

    (CITMAga, Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain)

Abstract

This article introduces a discrete-time fractional variable order over a SEIQR model, incorporated for COVID-19. Initially, we establish the well-possedness of solution. Further, the disease-free and the endemic equilibrium points are determined. Moreover, the local asymptotic stability of the model is analyzed. We develop a novel discrete fractional optimal control problem tailored for COVID-19, utilizing a discrete mathematical model featuring a variable order fractional derivative. Finally, we validate the reliability of these analytical findings through numerical simulations and offer insights from a biological perspective.

Suggested Citation

  • Meriem Boukhobza & Amar Debbouche & Lingeshwaran Shangerganesh & Juan J. Nieto, 2024. "The Stability of Solutions of the Variable-Order Fractional Optimal Control Model for the COVID-19 Epidemic in Discrete Time," Mathematics, MDPI, vol. 12(8), pages 1-24, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1236-:d:1379074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Higazy, M., 2020. "Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Tirumalasetty Chiranjeevi & Raj Kumar Biswas, 2017. "Discrete-Time Fractional Optimal Control," Mathematics, MDPI, vol. 5(2), pages 1-12, April.
    3. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boukhobza, Meriem & Debbouche, Amar & Shangerganesh, Lingeshwaran & Torres, Delfim F.M., 2024. "Modeling the dynamics of the Hepatitis B virus via a variable-order discrete system," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Chayu Yang & Bo Deng, 2024. "Dynamics of Infectious Diseases Incorporating a Testing Compartment," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
    3. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    4. Raul Nistal & Manuel De la Sen & Santiago Alonso-Quesada & Asier Ibeas, 2018. "On a New Discrete SEIADR Model with Mixed Controls: Study of Its Properties," Mathematics, MDPI, vol. 7(1), pages 1-19, December.
    5. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Anand, Monalisa & Danumjaya, P. & Rao, P. Raja Sekhara, 2023. "A nonlinear mathematical model on the Covid-19 transmission pattern among diabetic and non-diabetic population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 346-369.
    8. Sharafian, Amin & Kanesan, Jeevan & Khairuddin, Anis Salwa Mohd & Ramanathan, Anand & Sharifi, Alireza & Bai, Xiaoshan, 2023. "A novel approach to state estimation of HIV infection dynamics using fixed-time fractional order observer," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Zhou, Jiaying & Ye, Yong & Arenas, Alex & Gómez, Sergio & Zhao, Yi, 2023. "Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    11. Khajji, Bouchaib & Kouidere, Abdelfatah & Elhia, Mohamed & Balatif, Omar & Rachik, Mostafa, 2021. "Fractional optimal control problem for an age-structured model of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Ping He & Yu Gao & Longfei Guo & Tongtong Huo & Yuxin Li & Xingren Zhang & Yunfeng Li & Cheng Peng & Fanyun Meng, 2021. "Evaluating the Disaster Risk of the COVID-19 Pandemic Using an Ecological Niche Model," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    13. Aldila, Dipo, 2020. "Analyzing the impact of the media campaign and rapid testing for COVID-19 as an optimal control problem in East Java, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Arindita Saha & Puja Dash & Naladi Ram Babu & Tirumalasetty Chiranjeevi & Bathina Venkateswararao & Łukasz Knypiński, 2022. "Impact of Spotted Hyena Optimized Cascade Controller in Load Frequency Control of Wave-Solar-Double Compensated Capacitive Energy Storage Based Interconnected Power System," Energies, MDPI, vol. 15(19), pages 1-25, September.
    17. Yadav, Pramod Kumar & Goel, Palak, 2023. "Treatment seeking dilemma for tuberculosis as timed strategic prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    18. Zhu, Linhe & Chen, Siyi & Shen, Shuling, 2024. "Pattern dynamics analysis of a reaction–diffusion network propagation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 425-444.
    19. Ullah, Mohammad Sharif & Higazy, M. & Ariful Kabir, K.M., 2022. "Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Boukhobza, Meriem & Debbouche, Amar & Shangerganesh, Lingeshwaran & Torres, Delfim F.M., 2024. "Modeling the dynamics of the Hepatitis B virus via a variable-order discrete system," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1236-:d:1379074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.