IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i6p925-d1361386.html
   My bibliography  Save this article

Mathematical Modeling of Multi-Phenomena Anisotropic Systems: Ejection of Primary Aerosols during the Fast Pyrolysis of Biomass

Author

Listed:
  • Mario A. Sánchez

    (Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Envigado 055428, Colombia)

  • Juan C. Maya

    (Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Medellín 050034, Colombia)

  • Farid Chejne

    (Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia Sede Medellín, Medellín 050034, Colombia)

  • Brennan Pecha

    (Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 15013, USA)

  • Adriana M. Quinchía-Figueroa

    (Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Envigado 055428, Colombia)

Abstract

This study introduces a novel particle model for biomass fast pyrolysis, incorporating an anisotropic cylindrical particle to address mass and energy transport coupled with aerosol ejection, which previous models have overlooked. The main contribution lies in developing a model that considers aerosol generation in anisotropic cylindrical particles for the first time, addressing bubbling dynamics and bursting within the liquid phase. The population balance equation describes bubble dynamics and aerosol formation, capturing phenomena like nucleation, growth, coalescence, and bursting. The model employs the method of moments with bubble volume as an internal variable, substantially reducing computational costs by eliminating dependence on this variable. Results highlight the significant impact of anisotropy and particle size on aerosol ejection: smaller, less elongated particles experience faster heating, quicker conversion, and the increased accumulation of the liquid intermediate phase. Specifically, 1 mm diameter particles yield higher concentrations of metaplast and bio-oil aerosols, exceeding 15%, compared to concentrations below 11% for 3 mm particles. This model provides insights into aerosol structure (volume, surface area), aiding in understanding aerosol reactivity at the reactor scale.

Suggested Citation

  • Mario A. Sánchez & Juan C. Maya & Farid Chejne & Brennan Pecha & Adriana M. Quinchía-Figueroa, 2024. "Mathematical Modeling of Multi-Phenomena Anisotropic Systems: Ejection of Primary Aerosols during the Fast Pyrolysis of Biomass," Mathematics, MDPI, vol. 12(6), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:925-:d:1361386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/6/925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/6/925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trubetskaya, Anna & Surup, Gerrit & Shapiro, Alexander & Bates, Richard B., 2017. "Modeling the influence of potassium content and heating rate on biomass pyrolysis," Applied Energy, Elsevier, vol. 194(C), pages 199-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Mengting & Liu, Jiani & Zhang, Yindi & Liu, Bing & Luo, Zixue & Cheng, Qiang, 2024. "Effect of co-combustion of coal with biomass on the morphology of soot," Renewable Energy, Elsevier, vol. 226(C).
    2. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    3. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    4. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    5. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    6. Trubetskaya, Anna & Grams, Jacek & Leahy, James J. & Johnson, Robert & Gallagher, Paul & Monaghan, Rory F.D. & Kwapinska, Marzena, 2020. "The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction," Renewable Energy, Elsevier, vol. 160(C), pages 998-1011.
    7. Wardach-Świȩcicka, Izabela & Kardaś, Dariusz, 2021. "Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow," Energy, Elsevier, vol. 221(C).
    8. Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).
    9. Gerrit Ralf Surup & Hamideh Kaffash & Yan Ma & Anna Trubetskaya & Johan Berg Pettersen & Merete Tangstad, 2022. "Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production," Energies, MDPI, vol. 15(11), pages 1-28, May.
    10. Shen, Yafei & Zhang, Niyu & Zhang, Shu, 2020. "Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons," Energy, Elsevier, vol. 190(C).
    11. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuan-Cheng & Baroutian, Saeid, 2020. "Optimization of food waste hydrothermal liquefaction by a two-step process in association with a double analysis," Energy, Elsevier, vol. 199(C).
    12. Ferreiro, A.I. & Segurado, R. & Costa, M., 2020. "Modelling soot formation during biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Trubetskaya, Anna & Timko, Michael T & Umeki, Kentaro, 2020. "Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:925-:d:1361386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.