IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p624-d1342315.html
   My bibliography  Save this article

Designing Ecotourism Routes with Time-Dependent Benefits along Arcs and Waiting Times at Nodes

Author

Listed:
  • Ramón Piedra-de-la-Cuadra

    (Departamento de Matemática Aplicada I, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain
    Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain)

  • Francisco A. Ortega

    (Departamento de Matemática Aplicada I, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain
    Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain)

Abstract

Ecotourism routes serve as powerful tools for fostering environmental awareness. To achieve this, it is crucial to design itineraries within natural parks that strike a balance between visitor experience and ecological preservation. Limiting the duration of visits prevents undue strain on both visitors and ecosystems. Effective routes should showcase high biodiversity, traversing diverse sites to enhance knowledge acquisition. Considering natural factors such as light conditions and climate, it is prudent to tailor visiting times to optimize the experience. Therefore, it makes sense to incorporate time-dependent benefits at arcs and the possibility of introducing waiting times at nodes in the design models. These two characteristics have enriched the optimization models developed to solve the tourist trip design problem based on maximizing benefit only when points of interest are visited. However, the specific application of these aforementioned characteristics and enriched optimization models to the arc orientation problem remains yet to be reported on and published in the literature. Our contribution addresses this gap, proposing a route design model with scenic value in the arches of the graph where the benefits perceived by travelers are maximized, taking into account a diversity of evaluations depending on the time of starting the trip through each arc.

Suggested Citation

  • Ramón Piedra-de-la-Cuadra & Francisco A. Ortega, 2024. "Designing Ecotourism Routes with Time-Dependent Benefits along Arcs and Waiting Times at Nodes," Mathematics, MDPI, vol. 12(5), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:624-:d:1342315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    2. Deitch, Ray & Ladany, Shaul P., 2000. "The one-period bus touring problem: Solved by an effective heuristic for the orienteering tour problem and improvement algorithm," European Journal of Operational Research, Elsevier, vol. 127(1), pages 69-77, November.
    3. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    4. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm," Transportation Science, INFORMS, vol. 39(4), pages 539-552, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    2. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. Zachariadis, E.E. & Kiranoudis, C.T., 2011. "Local search for the undirected capacitated arc routing problem with profits," European Journal of Operational Research, Elsevier, vol. 210(2), pages 358-367, April.
    4. Archetti, Claudia & Bertazzi, Luca & Laganà, Demetrio & Vocaturo, Francesca, 2017. "The Undirected Capacitated General Routing Problem with Profits," European Journal of Operational Research, Elsevier, vol. 257(3), pages 822-833.
    5. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    6. Julián Aráoz & Elena Fernández & Carles Franquesa, 2009. "The Clustered Prize-Collecting Arc Routing Problem," Transportation Science, INFORMS, vol. 43(3), pages 287-300, August.
    7. José Ruiz-Meza & Jairo R. Montoya-Torres, 2021. "Tourist trip design with heterogeneous preferences, transport mode selection and environmental considerations," Annals of Operations Research, Springer, vol. 305(1), pages 227-249, October.
    8. Colombi, Marco & Mansini, Renata, 2014. "New results for the Directed Profitable Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 760-773.
    9. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    10. Colombi, Marco & Corberán, Ángel & Mansini, Renata & Plana, Isaac & Sanchis, José M., 2017. "The directed profitable rural postman problem with incompatibility constraints," European Journal of Operational Research, Elsevier, vol. 261(2), pages 549-562.
    11. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    12. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    13. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    14. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    15. Hashemi Doulabi, Seyed Hossein & Seifi, Abbas, 2013. "Lower and upper bounds for location-arc routing problems with vehicle capacity constraints," European Journal of Operational Research, Elsevier, vol. 224(1), pages 189-208.
    16. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    17. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    18. Chen, Bi Yu & Chen, Xiao-Wei & Chen, Hui-Ping & Lam, William H.K., 2020. "Efficient algorithm for finding k shortest paths based on re-optimization technique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    19. Barahimi, Amir Hossein & Eydi, Alireza & Aghaie, Abdolah, 2021. "Multi-modal urban transit network design considering reliability: multi-objective bi-level optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Kadri Sylejmani & Jürgen Dorn & Nysret Musliu, 2017. "Planning the trip itinerary for tourist groups," Information Technology & Tourism, Springer, vol. 17(3), pages 275-314, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:624-:d:1342315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.