IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i3p822-833.html
   My bibliography  Save this article

The Undirected Capacitated General Routing Problem with Profits

Author

Listed:
  • Archetti, Claudia
  • Bertazzi, Luca
  • Laganà, Demetrio
  • Vocaturo, Francesca

Abstract

In this paper we introduce and study the Undirected Capacitated General Routing Problem with Profits (UCGRPP). This problem is defined on an undirected graph where a subset of vertices and edges correspond to customers, which are associated with a given profit and demand. The profit of each customer can be collected at most once. A fleet of homogeneous capacitated vehicles is given to serve the customers. The objective is to find the vehicle routes that maximize the difference between the total collected profit and the traveling cost in such a way that the demand collected by each vehicle does not exceed the capacity and the total duration of each route is not greater than a maximum given time limit. We propose a mathematical formulation of the problem and introduce valid inequalities to strengthen the corresponding continuous relaxation. Moreover, we provide an aggregate formulation that allows us to introduce further inequalities. Then, we propose a two–phase exact algorithm for the solution of the UCGRPP. In the first phase, a branch-and-cut algorithm is used to solve the aggregate formulation and to identify a cut pool of aggregate valid inequalities to be used in the second phase, where a branch-and-cut algorithm is implemented to optimally solve the UCGRPP. Computational results on a large set of problem instances show that the use of the aggregate formulation is effective, making the two-phase exact algorithm able to optimally solve a large number of instances.

Suggested Citation

  • Archetti, Claudia & Bertazzi, Luca & Laganà, Demetrio & Vocaturo, Francesca, 2017. "The Undirected Capacitated General Routing Problem with Profits," European Journal of Operational Research, Elsevier, vol. 257(3), pages 822-833.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:822-833
    DOI: 10.1016/j.ejor.2016.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Souffriau, Wouter & Vansteenwegen, Pieter & Vanden Berghe, Greet & Van Oudheusden, Dirk, 2011. "The planning of cycle trips in the province of East Flanders," Omega, Elsevier, vol. 39(2), pages 209-213, April.
    2. H. A. Eiselt & Michel Gendreau & Gilbert Laporte, 1995. "Arc Routing Problems, Part II: The Rural Postman Problem," Operations Research, INFORMS, vol. 43(3), pages 399-414, June.
    3. Bianchessi, N. & Mansini, R. & Speranza, M.G., 2014. "The distance constrained multiple vehicle traveling purchaser problem," European Journal of Operational Research, Elsevier, vol. 235(1), pages 73-87.
    4. Deitch, Ray & Ladany, Shaul P., 2000. "The one-period bus touring problem: Solved by an effective heuristic for the orienteering tour problem and improvement algorithm," European Journal of Operational Research, Elsevier, vol. 127(1), pages 69-77, November.
    5. Lopez, Leo & Carter, Michael W. & Gendreau, Michel, 1998. "The hot strip mill production scheduling problem: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 317-335, April.
    6. C Archetti & D Feillet & A Hertz & M G Speranza, 2009. "The capacitated team orienteering and profitable tour problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 831-842, June.
    7. H. A. Eiselt & Michel Gendreau & Gilbert Laporte, 1995. "Arc Routing Problems, Part I: The Chinese Postman Problem," Operations Research, INFORMS, vol. 43(2), pages 231-242, April.
    8. Ángel Corberán & Elena Fernández & Carles Franquesa & José María Sanchis, 2011. "The Windy Clustered Prize-Collecting Arc-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 317-334, August.
    9. Beraldi, Patrizia & Bruni, Maria Elena & Laganà, Demetrio & Musmanno, Roberto, 2015. "The mixed capacitated general routing problem under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(2), pages 382-392.
    10. Julián Aráoz & Elena Fernández & Carles Franquesa, 2009. "The Clustered Prize-Collecting Arc Routing Problem," Transportation Science, INFORMS, vol. 43(3), pages 287-300, August.
    11. Gendreau, Michel & Manerba, Daniele & Mansini, Renata, 2016. "The multi-vehicle traveling purchaser problem with pairwise incompatibility constraints and unitary demands: A branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 248(1), pages 59-71.
    12. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    13. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    14. Claudia Archetti & M. Grazia Speranza & Ángel Corberán & José M. Sanchis & Isaac Plana, 2014. "The Team Orienteering Arc Routing Problem," Transportation Science, INFORMS, vol. 48(3), pages 442-457, August.
    15. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    16. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm," Transportation Science, INFORMS, vol. 39(4), pages 539-552, November.
    17. E. Angelelli & R. Mansini & M. Vindigni, 2016. "The Stochastic and Dynamic Traveling Purchaser Problem," Transportation Science, INFORMS, vol. 50(2), pages 642-658, May.
    18. Davide Infante & Giuseppe Paletta & Francesca Vocaturo, 2009. "A ship-truck intermodal transportation problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(3), pages 247-259, September.
    19. Irnich, Stefan & Laganà, Demetrio & Schlebusch, Claudia & Vocaturo, Francesca, 2015. "Two-phase branch-and-cut for the mixed capacitated general routing problem," European Journal of Operational Research, Elsevier, vol. 243(1), pages 17-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    2. Pourhejazy, Pourya & Zhang, Dali & Zhu, Qinghua & Wei, Fangfang & Song, Shuang, 2021. "Integrated E-waste transportation using capacitated general routing problem with time-window," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    3. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    4. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.
    5. Ciancio, Claudio & Laganá, Demetrio & Vocaturo, Francesca, 2018. "Branch-price-and-cut for the Mixed Capacitated General Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 267(1), pages 187-199.
    6. Benavent, Enrique & Corberán, Ángel & Laganà, Demetrio & Vocaturo, Francesca, 2019. "The periodic rural postman problem with irregular services on mixed graphs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 826-839.
    7. Jaehn, Florian & Meissner, Finn, 2022. "The rebound effect in transportation," Omega, Elsevier, vol. 108(C).
    8. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    9. Bertazzi, Luca & Coelho, Leandro C. & De Maio, Annarita & Laganà, Demetrio, 2019. "A matheuristic algorithm for the multi-depot inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 524-544.
    10. Chen, Daqiang & Sun, Danzhi & Yin, Yunqiang & Dhamotharan, Lalitha & Kumar, Ajay & Guo, Yihan, 2022. "The resilience of logistics network against node failures," International Journal of Production Economics, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colombi, Marco & Mansini, Renata, 2014. "New results for the Directed Profitable Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 760-773.
    2. Colombi, Marco & Corberán, Ángel & Mansini, Renata & Plana, Isaac & Sanchis, José M., 2017. "The directed profitable rural postman problem with incompatibility constraints," European Journal of Operational Research, Elsevier, vol. 261(2), pages 549-562.
    3. Archetti, Claudia & Corberán, Ángel & Plana, Isaac & Sanchis, José Maria & Speranza, M. Grazia, 2015. "A matheuristic for the Team Orienteering Arc Routing Problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 392-401.
    4. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    5. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    6. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    7. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    8. Ávila, Thais & Corberán, Ángel & Plana, Isaac & Sanchis, José M., 2016. "A branch-and-cut algorithm for the profitable windy rural postman problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1092-1101.
    9. Kasaei, Maziar & Salman, F. Sibel, 2016. "Arc routing problems to restore connectivity of a road network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 177-206.
    10. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    11. Enrique Benavent & Ángel Corberán & Luís Gouveia & Maria Mourão & Leonor Pinto, 2015. "Profitable mixed capacitated arc routing and related problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 244-274, April.
    12. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    13. Timo Hintsch & Stefan Irnich & Lone Kiilerich, 2021. "Branch-Price-and-Cut for the Soft-Clustered Capacitated Arc-Routing Problem," Transportation Science, INFORMS, vol. 55(3), pages 687-705, May.
    14. Claudia Archetti & M. Grazia Speranza & Ángel Corberán & José M. Sanchis & Isaac Plana, 2014. "The Team Orienteering Arc Routing Problem," Transportation Science, INFORMS, vol. 48(3), pages 442-457, August.
    15. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    16. Ángel Corberán & Elena Fernández & Carles Franquesa & José María Sanchis, 2011. "The Windy Clustered Prize-Collecting Arc-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 317-334, August.
    17. Fung, Richard Y.K. & Liu, Ran & Jiang, Zhibin, 2013. "A memetic algorithm for the open capacitated arc routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 53-67.
    18. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    19. Jaehn, Florian & Meissner, Finn, 2022. "The rebound effect in transportation," Omega, Elsevier, vol. 108(C).
    20. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:822-833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.