IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i9d10.1007_s13198-024-02426-4.html
   My bibliography  Save this article

Solution of fuzzy transportation problem based upon pentagonal and hexagonal fuzzy numbers

Author

Listed:
  • Divya Sharma

    (Amity University
    Jaypee Institute of Information Technology)

  • Dinesh C. S. Bisht

    (Jaypee Institute of Information Technology)

  • Pankaj Kumar Srivastava

    (Jaypee Institute of Information Technology)

Abstract

The given study focuses on a novel approach to handle the pentagonal and hexagonal fuzzy transportation problems. The parameters of a transportation problem have been fuzzified into pentagonal and hexagonal fuzzy numbers. The study’s innovation resides in its proposal of two distinct defuzzification methods to transform pentagonal and hexagonal fuzzy numbers into deterministic form, both of which are based on the centroid approach. The classical Vogel’s approximation method and Modified distribution methods are used to obtain the initial feasible and optimal solution of the above-stated problems. A numerical illustration is given to prove the efficiency of the proposed algorithm. A comparison of the suggested technique has been made with the existing methods. Also, the results obtained using pentagonal and hexagonal fuzzy numbers are compared.

Suggested Citation

  • Divya Sharma & Dinesh C. S. Bisht & Pankaj Kumar Srivastava, 2024. "Solution of fuzzy transportation problem based upon pentagonal and hexagonal fuzzy numbers," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4348-4354, September.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02426-4
    DOI: 10.1007/s13198-024-02426-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02426-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02426-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Dipankar Chakraborty & Dipak Kumar Jana & Tapan Kumar Roy, 2016. "A new approach to solve fully fuzzy transportation problem using triangular fuzzy number," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 26(2), pages 153-179.
    3. Ali Ebrahimnejad & Jose Luis Verdegay, 2018. "A new approach for solving fully intuitionistic fuzzy transportation problems," Fuzzy Optimization and Decision Making, Springer, vol. 17(4), pages 447-474, December.
    4. Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "A new approach for solving intuitionistic fuzzy transportation problem of type-2," Annals of Operations Research, Springer, vol. 243(1), pages 349-363, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    2. Hsien-Chung Wu, 2019. "Solving Fuzzy Linear Programming Problems with Fuzzy Decision Variables," Mathematics, MDPI, vol. 7(7), pages 1-105, June.
    3. Manuel Arana-Jiménez & Carmen Sánchez-Gil, 2020. "On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers," Journal of Global Optimization, Springer, vol. 77(1), pages 27-52, May.
    4. Bogdana Stanojević & Sorin Nǎdǎban, 2023. "Empiric Solutions to Full Fuzzy Linear Programming Problems Using the Generalized “min” Operator," Mathematics, MDPI, vol. 11(23), pages 1-15, December.
    5. Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
    6. P. Senthil Kumar, 2020. "Developing a New Approach to Solve Solid Assignment Problems Under Intuitionistic Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 9(1), pages 1-34, January.
    7. Salma Iqbal & Naveed Yaqoob & Muhammad Gulistan, 2023. "An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems," Mathematics, MDPI, vol. 11(15), pages 1-21, August.
    8. Ashutosh Choudhary & Shiv Prasad Yadav, 2022. "An approach to solve interval valued intuitionistic fuzzy transportation problem of Type-2," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2992-3001, December.
    9. Hsien-Chung Wu, 2023. "Solving Fuzzy Optimization Problems Using Shapley Values and Evolutionary Algorithms," Mathematics, MDPI, vol. 11(24), pages 1-26, December.
    10. P. Senthil Kumar, 2020. "Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 37(3), pages 418-451.
    11. Abhishekh & A. K. Nishad, 2019. "A Novel Ranking Approach to Solving Fully LR-Intuitionistic Fuzzy Transportation Problems," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 95-112, March.
    12. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    13. Carla Oliveira Henriques & Dulce Helena Coelho & Maria Elisabete Duarte Neves, 2022. "Investment planning in energy efficiency programs: a portfolio based approach," Operational Research, Springer, vol. 22(1), pages 615-649, March.
    14. Gourav Gupta & Shivani & Deepika Rani, 2024. "Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1274-1300, September.
    15. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    16. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    17. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    18. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    19. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    20. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02426-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.