IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3708-d1530116.html
   My bibliography  Save this article

Blood Glucose Concentration Prediction Based on Double Decomposition and Deep Extreme Learning Machine Optimized by Nonlinear Marine Predator Algorithm

Author

Listed:
  • Yang Shen

    (College of Science, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Deyi Li

    (College of Science, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Wenbo Wang

    (Hubei Province Key Laboratory of System Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Xu Dong

    (College of Science, Wuhan University of Science and Technology, Wuhan 430065, China)

Abstract

Continuous glucose monitoring data have strong time variability as well as complex non-stationarity and nonlinearity. The existing blood glucose concentration prediction models often overlook the impacts of residual components after multi-scale decomposition on prediction accuracy. To enhance the prediction accuracy, a new short-term glucose prediction model that integrates the double decomposition technique, nonlinear marine predator algorithm (NMPA) and deep extreme learning machine (DELM) is proposed. First of all, the initial blood glucose data are decomposed by variational mode decomposition (VMD) to reduce its complexity and non-stationarity. To make full use of the decomposed residual component, the time-varying filter empirical mode decomposition (TVF-EMD) is utilized to decompose the component, and further realize complete decomposition. Then, the NMPA algorithm is utilized to optimize the weight parameters of the DELM network to avoid any fluctuations in prediction performance, and all the decomposed subsequences are predicted separately. Finally, the output results of each model are superimposed to acquire the predicted value of blood sugar concentration. Using actual collected blood glucose concentration data for predictive analysis, the results of three patients show the following: (i) The double decomposition strategy effectively reduces the complexity and volatility of the original sequence and the residual component. Making full use of the important information implied by the residual component has the best decomposition effect; (ii) The NMPA algorithm optimizes DELM network parameters, which can effectively enhance the predictive capabilities of the network and acquire more precise predictive results; (iii) The model proposed in this paper can achieve a high prediction accuracy of 45 min in advance, and the root mean square error values are 5.2095, 4.241 and 6.3246, respectively. Compared with the other eleven models, it has the best prediction accuracy.

Suggested Citation

  • Yang Shen & Deyi Li & Wenbo Wang & Xu Dong, 2024. "Blood Glucose Concentration Prediction Based on Double Decomposition and Deep Extreme Learning Machine Optimized by Nonlinear Marine Predator Algorithm," Mathematics, MDPI, vol. 12(23), pages 1-25, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3708-:d:1530116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Ting & Wang, Wenbo & Yu, Min, 2022. "A novel blood glucose time series prediction framework based on a novel signal decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijun Wang & Chun Liu & Kui Liang & Ziyun Cheng & Xue Kong & Shuang Gao, 2022. "Wind Speed Prediction Model Based on Improved VMD and Sudden Change of Wind Speed," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    2. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    3. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    4. Orang, Omid & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha, 2023. "Multi-output time series forecasting with randomized multivariate Fuzzy Cognitive Maps," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    6. Zhao, Jing & Guo, Yiyi & Lin, Yihua & Zhao, Zhiyuan & Guo, Zhenhai, 2024. "A novel dynamic ensemble of numerical weather prediction for multi-step wind speed forecasting with deep reinforcement learning and error sequence modeling," Energy, Elsevier, vol. 302(C).
    7. Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
    8. Zheng, Jingwei & Wang, Jianzhou, 2024. "Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm," Energy, Elsevier, vol. 293(C).
    9. Zifa Liu & Xinyi Li & Haiyan Zhao, 2023. "Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction," Energies, MDPI, vol. 16(10), pages 1-24, May.
    10. Zhu, Ting & Wang, Wenbo & Yu, Min, 2023. "A novel hybrid scheme for remaining useful life prognostic based on secondary decomposition, BiGRU and error correction," Energy, Elsevier, vol. 276(C).
    11. Hou, Guolian & Wang, Junjie & Fan, Yuzhen, 2024. "Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction," Energy, Elsevier, vol. 286(C).
    12. Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
    13. Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
    14. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    15. Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3708-:d:1530116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.