IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015603.html
   My bibliography  Save this article

A novel dynamic ensemble of numerical weather prediction for multi-step wind speed forecasting with deep reinforcement learning and error sequence modeling

Author

Listed:
  • Zhao, Jing
  • Guo, Yiyi
  • Lin, Yihua
  • Zhao, Zhiyuan
  • Guo, Zhenhai

Abstract

Accurate wind forecasts for one day ahead or longer periods have significant impacts on the safe and efficient dispatch of power grids, where Numerical Weather Prediction (NWP) serves as the essential tool, such as ensemble NWP integrating multiple single simulations. Typically, ensembles include all single members with fixed weights; however, the relative accuracy of each member may change over time. This study introduces an attractive idea: improving ensemble performance by dynamically recognizing and avoiding low-performing members. It proposes a dynamic ensemble strategy based on NWP, reinforcement learning and error sequence correction. The process begins with Weather Research and Forecasting ensemble simulations. A dynamic framework is then constructed by mapping the multi-step ensemble problem into a Markov decision process, which is further solved using deep deterministic policy gradient. Subsequently, a hybrid deep learning model, comprising temporal convolutional network and bidirectional long short-term memory, is constructed for error sequence estimation of dynamic ensemble, using the high-frequency information of NWP as input. Conducting experiments at two wind farms, and focusing on the 24-h wind speed forecast with a 15-min time resolution, the proposed system demonstrates a reliable and stable ensemble throughout the entire forecasting horizon, significantly reducing the probability of large forecasting errors.

Suggested Citation

  • Zhao, Jing & Guo, Yiyi & Lin, Yihua & Zhao, Zhiyuan & Guo, Zhenhai, 2024. "A novel dynamic ensemble of numerical weather prediction for multi-step wind speed forecasting with deep reinforcement learning and error sequence modeling," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015603
    DOI: 10.1016/j.energy.2024.131787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.