IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3646-d1526441.html
   My bibliography  Save this article

Properties of the SURE Estimates When Using Continuous Thresholding Functions for Wavelet Shrinkage

Author

Listed:
  • Alexey Kudryavtsev

    (Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
    Moscow Center for Fundamental and Applied Mathematics, Moscow 119991, Russia)

  • Oleg Shestakov

    (Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
    Moscow Center for Fundamental and Applied Mathematics, Moscow 119991, Russia
    Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow 119333, Russia)

Abstract

Wavelet analysis algorithms in combination with thresholding procedures are widely used in nonparametric regression problems when estimating a signal function from noisy data. The advantages of these methods lie in their computational efficiency and the ability to adapt to the local features of the estimated function. It is usually assumed that the signal function belongs to some special class. For example, it can be piecewise continuous or piecewise differentiable and have a compact support. These assumptions, as a rule, allow the signal function to be economically represented on some specially selected basis in such a way that the useful signal is concentrated in a relatively small number of large absolute value expansion coefficients. Then, thresholding is performed to remove the noise coefficients. Typically, the noise distribution is assumed to be additive and Gaussian. This model is well studied in the literature, and various types of thresholding and parameter selection strategies adapted for specific applications have been proposed. The risk analysis of thresholding methods is an important practical task, since it makes it possible to assess the quality of both the methods themselves and the equipment used for processing. Most of the studies in this area investigate the asymptotic order of the theoretical risk. In practical situations, the theoretical risk cannot be calculated because it depends explicitly on the unobserved, noise-free signal. However, a statistical risk estimate constructed on the basis of the observed data can also be used to assess the quality of noise reduction methods. In this paper, a model of a signal contaminated with additive Gaussian noise is considered, and the general formulation of the thresholding problem with threshold functions belonging to a special class is discussed. Lower bounds are obtained for the threshold values that minimize the unbiased risk estimate. Conditions are also given under which this risk estimate is asymptotically normal and strongly consistent. The results of these studies can provide the basis for further research in the field of constructing confidence intervals and obtaining estimates of the convergence rate, which, in turn, will make it possible to obtain specific values of errors in signal processing for a wide range of thresholding methods.

Suggested Citation

  • Alexey Kudryavtsev & Oleg Shestakov, 2024. "Properties of the SURE Estimates When Using Continuous Thresholding Functions for Wavelet Shrinkage," Mathematics, MDPI, vol. 12(23), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3646-:d:1526441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Can He & Jianchun Xing & Juelong Li & Qiliang Yang & Ronghao Wang, 2015. "A New Wavelet Thresholding Function Based on Hyperbolic Tangent Function," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, September.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. A. Antoniadis & D. Leporini & J.–C. Pesquet, 2002. "Wavelet thresholding for some classes of non–Gaussian noise," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(4), pages 434-453, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    3. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    4. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    5. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    6. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    8. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    9. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    10. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    11. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    12. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    13. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Michael Hintermüller & Tao Wu, 2014. "A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors," Computational Optimization and Applications, Springer, vol. 57(1), pages 1-25, January.
    15. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
    16. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    17. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    18. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    19. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    20. Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3646-:d:1526441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.