IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i22p3467-d1515447.html
   My bibliography  Save this article

A High-Dimensional Cramér–von Mises Test

Author

Listed:
  • Danna Zhang

    (Department of Mathematics, University of California San Diego, San Diego, CA 92093, USA)

  • Mengyu Xu

    (Department of Statistics and Data Science, University of Central Florida, Orlando, FL 32816, USA)

Abstract

The Cramér–von Mises test provides a useful criterion for assessing goodness of fit in various problems. In this paper, we introduce a novel Cramér–von Mises-type test for testing distributions of high-dimensional continuous data. We establish an asymptotic theory for the proposed test statistics based on quadratic functions in high-dimensional stochastic processes. To estimate the limiting distribution of the test statistic, we propose two practical approaches: a plug-in calibration method and a subsampling method. Theoretical justifications are provided for both techniques. Numerical simulation also confirms the convergence of the proposed methods.

Suggested Citation

  • Danna Zhang & Mengyu Xu, 2024. "A High-Dimensional Cramér–von Mises Test," Mathematics, MDPI, vol. 12(22), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3467-:d:1515447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/22/3467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/22/3467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    2. Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.
    3. Jiajuan Liang & Man-Lai Tang & Xuejing Zhao, 2019. "Testing high-dimensional normality based on classical skewness and Kurtosis with a possible small sample size," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(23), pages 5719-5732, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin, Kuo-Hsuan & Li, Xue, 2019. "Bayesian forecast combination in VAR-DSGE models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 278-298.
    2. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    3. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, May.
    4. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    6. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    7. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    8. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    9. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    10. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    11. Gianluca Cubadda, 2024. "VAR models with an index structure: A survey with new results," Papers 2412.11278, arXiv.org.
    12. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    13. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    14. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    15. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    16. Talbi, Marwa & de Peretti, Christian & Belkacem, Lotfi, 2020. "Dynamics and causality in distribution between spot and future precious metals: A copula approach," Resources Policy, Elsevier, vol. 66(C).
    17. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    18. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    19. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    20. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019. "Large time‐varying parameter VARs: A nonparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3467-:d:1515447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.