IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i1p162-d1313117.html
   My bibliography  Save this article

Empirical-Likelihood-Based Inference for Partially Linear Models

Author

Listed:
  • Haiyan Su

    (School of Computing, Montclair State University, Montclair, NJ 07043, USA)

  • Linlin Chen

    (Department of Mathematics and Statistics, Rochester Institute of Technology, Rochester, NY 14632, USA)

Abstract

Partially linear models find extensive application in biometrics, econometrics, social sciences, and various other fields due to their versatility in accommodating both parametric and nonparametric elements. This study aims to establish statistical inference for the parametric component effects within these models, employing a nonparametric empirical likelihood approach. The proposed method involves a projection step to eliminate the nuisance nonparametric component and utilizes an empirical-likelihood-based technique, along with the Bartlett correction, to enhance the coverage probability of the confidence interval for the parameter of interest. This method demonstrates robustness in handling normally and non-normally distributed errors. The proposed empirical likelihood ratio statistic converges to a limiting chi-square distribution under certain regulations. Simulation studies demonstrate that this method provides better inference in terms of coverage probabilities compared to the conventional normal-approximation-based method. The proposed method is illustrated by analyzing the Boston housing data from a real study.

Suggested Citation

  • Haiyan Su & Linlin Chen, 2024. "Empirical-Likelihood-Based Inference for Partially Linear Models," Mathematics, MDPI, vol. 12(1), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:1:p:162-:d:1313117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song Xi Chen & Hengjian Cui, 2006. "On Bartlett correction of empirical likelihood in the presence of nuisance parameters," Biometrika, Biometrika Trust, vol. 93(1), pages 215-220, March.
    2. Liang, Hua, 2006. "Estimation in partially linear models and numerical comparisons," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 675-687, February.
    3. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    4. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    2. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    3. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Dette, Holger & Marchlewski, Mareen, 2007. "A test for the parametric form of the variance function in apartial linear regression model," Technical Reports 2007,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    7. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    8. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    9. Zhu, Xuehu & Wang, Tao & Zhao, Junlong & Zhu, Lixing, 2017. "Inference for biased transformation models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 105-120.
    10. Kim, Namhyun & W. Saart, Patrick, 2021. "Estimation in partially linear semiparametric models with parametric and/or nonparametric endogeneity," Cardiff Economics Working Papers E2021/9, Cardiff University, Cardiff Business School, Economics Section.
    11. Lu Lin & Lili Liu & Xia Cui & Kangning Wang, 2021. "A generalized semiparametric regression and its efficient estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 1-24, March.
    12. Aifen Feng & Xiaogai Chang & Jingya Fan & Zhengfen Jin, 2023. "Application of LADMM and As-LADMM for a High-Dimensional Partially Linear Model," Mathematics, MDPI, vol. 11(19), pages 1-14, October.
    13. B. Ettinger & S. Perotto & L. M. Sangalli, 2016. "Spatial regression models over two-dimensional manifolds," Biometrika, Biometrika Trust, vol. 103(1), pages 71-88.
    14. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    15. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    16. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    17. Xin Lu & Brent A. Johnson, 2015. "Direct estimation of the mean outcome on treatment when treatment assignment and discontinuation compete," Biometrika, Biometrika Trust, vol. 102(4), pages 797-807.
    18. Mou, Xichen & Wang, Dewei, 2024. "Additive partially linear model for pooled biomonitoring data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    19. Zhang, Jun & Feng, Zhenghui & Peng, Heng, 2018. "Estimation and hypothesis test for partial linear multiplicative models," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 87-103.
    20. Wang, Xiuli & Zhao, Shengli & Wang, Mingqiu, 2017. "Restricted profile estimation for partially linear models with large-dimensional covariates," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 71-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:1:p:162-:d:1313117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.