IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v109y2017icp105-120.html
   My bibliography  Save this article

Inference for biased transformation models

Author

Listed:
  • Zhu, Xuehu
  • Wang, Tao
  • Zhao, Junlong
  • Zhu, Lixing

Abstract

Working regression models are often parsimonious for practical use and however may be biased. This is because either some strong signals to the response are not included in working models or too many weak signals are excluded in the modeling stage, which make cumulative bias. Thus, estimating consistently the parameters of interest in biased working models is then a challenge. This paper investigates the estimation problem for linear transformation models with three aims. First, to identify strong signals in the original full models, a sufficient dimension reduction approach is applied to transferring linear transformation models to pro forma linear models. This method can efficiently avoid high-dimensional nonparametric estimation for the unknown model transformation. Second, after identifying strong signals, a semiparametric re-modeling with some artificially constructed predictors is performed to correct model bias in working models. The construction procedure is introduced and a ridge ratio estimation is proposed to determine the number of these predictors. Third, root-n consistent estimators of the parameters in working models are defined and the asymptotic normality is proved. The performance of the new method is illustrated through simulation studies and a real data analysis.

Suggested Citation

  • Zhu, Xuehu & Wang, Tao & Zhao, Junlong & Zhu, Lixing, 2017. "Inference for biased transformation models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 105-120.
  • Handle: RePEc:eee:csdana:v:109:y:2017:i:c:p:105-120
    DOI: 10.1016/j.csda.2016.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302729
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    2. Lin, Lu & Zhu, Lixing & Gai, Yujie, 2016. "Inference for biased models: A quasi-instrumental variable approach," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 22-36.
    3. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    4. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    5. Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
    6. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    7. Zhu, Xuehu & Chen, Fei & Guo, Xu & Zhu, Lixing, 2016. "Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 263-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Jun & Zhu, Xuehu & Lin, Lu & Zhu, Lixing, 2019. "Estimation for biased partial linear single index models," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jun & Zhou, Yan & Lin, Bingqing & Yu, Yao, 2017. "Estimation and hypothesis test on partial linear models with additive distortion measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 114-128.
    2. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    3. Lin, Lu & Zhu, Lixing & Gai, Yujie, 2016. "Inference for biased models: A quasi-instrumental variable approach," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 22-36.
    4. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    5. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    6. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    7. Dette, Holger & Marchlewski, Mareen, 2007. "A test for the parametric form of the variance function in apartial linear regression model," Technical Reports 2007,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    10. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    11. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    12. Kim, Namhyun & W. Saart, Patrick, 2021. "Estimation in partially linear semiparametric models with parametric and/or nonparametric endogeneity," Cardiff Economics Working Papers E2021/9, Cardiff University, Cardiff Business School, Economics Section.
    13. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    14. Lu Lin & Lili Liu & Xia Cui & Kangning Wang, 2021. "A generalized semiparametric regression and its efficient estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 1-24, March.
    15. Aifen Feng & Xiaogai Chang & Jingya Fan & Zhengfen Jin, 2023. "Application of LADMM and As-LADMM for a High-Dimensional Partially Linear Model," Mathematics, MDPI, vol. 11(19), pages 1-14, October.
    16. B. Ettinger & S. Perotto & L. M. Sangalli, 2016. "Spatial regression models over two-dimensional manifolds," Biometrika, Biometrika Trust, vol. 103(1), pages 71-88.
    17. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    18. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    19. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    20. Xin Lu & Brent A. Johnson, 2015. "Direct estimation of the mean outcome on treatment when treatment assignment and discontinuation compete," Biometrika, Biometrika Trust, vol. 102(4), pages 797-807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:109:y:2017:i:c:p:105-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.