IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.04611.html
   My bibliography  Save this paper

A note on representation of BSDE-based dynamic risk measures and dynamic capital allocations

Author

Listed:
  • Lesedi Mabitsela
  • Calisto Guambe
  • Rodwell Kufakunesu

Abstract

In this paper, we provide a representation theorem for dynamic capital allocation under It{\^o}-L{\'e}vy model. We consider the representation of dynamic risk measures defined under Backward Stochastic Differential Equations (BSDE) with generators that grow quadratic-exponentially in the control variables. Dynamic capital allocation is derived from the differentiability of BSDEs with jumps. The results are illustrated by deriving a capital allocation representation for dynamic entropic risk measure and static coherent risk measure.

Suggested Citation

  • Lesedi Mabitsela & Calisto Guambe & Rodwell Kufakunesu, 2018. "A note on representation of BSDE-based dynamic risk measures and dynamic capital allocations," Papers 1808.04611, arXiv.org.
  • Handle: RePEc:arx:papers:1808.04611
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.04611
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Yuhong Xu, 2016. "MULTIDIMENSIONAL DYNAMIC RISK MEASURE VIA CONDITIONAL g-EXPECTATION," Mathematical Finance, Wiley Blackwell, vol. 26(3), pages 638-673, July.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    6. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    7. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    8. Masaaki Fujii & Akihiko Takahashi, 2015. "Quadratic-exponential growth BSDEs with Jumps and their Malliavin's Differentiability," Papers 1512.05924, arXiv.org, revised Sep 2017.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. N. C. Framstad & B. Øksendal & A. Sulem, 2004. "Sufficient Stochastic Maximum Principle for the Optimal Control of Jump Diffusions and Applications to Finance," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 77-98, April.
    11. Quenez, Marie-Claire & Sulem, Agnès, 2013. "BSDEs with jumps, optimization and applications to dynamic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3328-3357.
    12. Alexander S. Cherny, 2009. "Capital Allocation And Risk Contribution With Discrete‐Time Coherent Risk," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 13-40, January.
    13. Royer, Manuela, 2006. "Backward stochastic differential equations with jumps and related non-linear expectations," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1358-1376, October.
    14. Eduard Kromer & Ludger Overbeck, 2014. "Representation Of Bsde-Based Dynamic Risk Measures And Dynamic Capital Allocations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1-16.
    15. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    16. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    2. Centrone, Francesca & Rosazza Gianin, Emanuela, 2018. "Capital allocation à la Aumann–Shapley for non-differentiable risk measures," European Journal of Operational Research, Elsevier, vol. 267(2), pages 667-675.
    3. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    4. Dejian Tian & Xunlian Wang, 2023. "Dynamic star-shaped risk measures and $g$-expectations," Papers 2305.02481, arXiv.org.
    5. Siu, Tak Kuen, 2016. "A functional Itô’s calculus approach to convex risk measures with jump diffusion," European Journal of Operational Research, Elsevier, vol. 250(3), pages 874-883.
    6. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    7. D. Madan & M. Pistorius & M. Stadje, 2017. "On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation," Finance and Stochastics, Springer, vol. 21(4), pages 1073-1102, October.
    8. Eduard Kromer & Ludger Overbeck, 2017. "DIFFERENTIABILITY OF BSVIEs AND DYNAMIC CAPITAL ALLOCATIONS," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    9. Roger J. A. Laeven & Emanuela Rosazza Gianin & Marco Zullino, 2023. "Dynamic Return and Star-Shaped Risk Measures via BSDEs," Papers 2307.03447, arXiv.org, revised Jul 2023.
    10. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    11. Yanhong Chen & Zachary Feinstein, 2022. "Set-valued dynamic risk measures for processes and for vectors," Finance and Stochastics, Springer, vol. 26(3), pages 505-533, July.
    12. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    13. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    14. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    15. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    17. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    18. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    19. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
    20. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.04611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.