IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2825-d1476454.html
   My bibliography  Save this article

A New Predictive Method for Classification Tasks in Machine Learning: Multi-Class Multi-Label Logistic Model Tree (MMLMT)

Author

Listed:
  • Bita Ghasemkhani

    (Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir 35390, Turkey)

  • Kadriye Filiz Balbal

    (Department of Computer Science, Dokuz Eylul University, Izmir 35390, Turkey)

  • Derya Birant

    (Department of Computer Engineering, Dokuz Eylul University, Izmir 35390, Turkey)

Abstract

This paper introduces a novel classification method for multi-class multi-label datasets, named multi-class multi-label logistic model tree (MMLMT). Our approach supports multi-label learning to predict multiple class labels simultaneously, thereby enhancing the model’s capacity to capture complex relationships within the data. The primary goal is to improve the accuracy of classification tasks involving multiple classes and labels. MMLMT integrates the logistic regression (LR) and decision tree (DT) algorithms, yielding interpretable models with high predictive performance. By combining the strengths of LR and DT, our method offers a flexible and powerful framework for handling multi-class multi-label data. Extensive experiments demonstrated the effectiveness of MMLMT across a range of well-known datasets with an average accuracy of 85.90%. Furthermore, our method achieved an average of 9.87% improvement compared to the results of state-of-the-art studies in the literature. These results highlight MMLMT’s potential as a valuable approach to multi-label learning.

Suggested Citation

  • Bita Ghasemkhani & Kadriye Filiz Balbal & Derya Birant, 2024. "A New Predictive Method for Classification Tasks in Machine Learning: Multi-Class Multi-Label Logistic Model Tree (MMLMT)," Mathematics, MDPI, vol. 12(18), pages 1-27, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2825-:d:1476454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tala Talaei Khoei & Naima Kaabouch, 2023. "Machine Learning: Models, Challenges, and Research Directions," Future Internet, MDPI, vol. 15(10), pages 1-29, October.
    2. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    3. Ning Li & Masoud Zare & Congke Yi & Rafael Jimenez, 2022. "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
    2. Tala Talaei Khoei & Aditi Singh, 2024. "A survey of Emotional Artificial Intelligence and crimes: detection, prediction, challenges and future direction," Journal of Computational Social Science, Springer, vol. 7(3), pages 2359-2402, December.
    3. Ying-Jen Chang & Kuo-Chuan Hung & Li-Kai Wang & Chia-Hung Yu & Chao-Kun Chen & Hung-Tze Tay & Jhi-Joung Wang & Chung-Feng Liu, 2021. "A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery," IJERPH, MDPI, vol. 18(5), pages 1-14, March.
    4. Maela Madel L. Cahigas & Ardvin Kester S. Ong & Yogi Tri Prasetyo, 2023. "Super Typhoon Rai’s Impacts on Siargao Tourism: Deciphering Tourists’ Revisit Intentions through Machine-Learning Algorithms," Sustainability, MDPI, vol. 15(11), pages 1-29, May.
    5. Yimin Li & Xuanlun Deng & Peikun Ji & Yiming Yang & Wenxue Jiang & Zhifang Zhao, 2022. "Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    6. Adrián G. Bruzón & Patricia Arrogante-Funes & Fátima Arrogante-Funes & Fidel Martín-González & Carlos J. Novillo & Rubén R. Fernández & René Vázquez-Jiménez & Antonio Alarcón-Paredes & Gustavo A. Alon, 2021. "Landslide Susceptibility Assessment Using an AutoML Framework," IJERPH, MDPI, vol. 18(20), pages 1-20, October.
    7. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    8. Ahmed Cemiloglu & Licai Zhu & Agab Bakheet Mohammednour & Mohammad Azarafza & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm," Land, MDPI, vol. 12(7), pages 1-20, July.
    9. Hassan Khazane & Mohammed Ridouani & Fatima Salahdine & Naima Kaabouch, 2024. "A Holistic Review of Machine Learning Adversarial Attacks in IoT Networks," Future Internet, MDPI, vol. 16(1), pages 1-42, January.
    10. Hasnain Iftikhar & Murad Khan & Zardad Khan & Faridoon Khan & Huda M Alshanbari & Zubair Ahmad, 2023. "A Comparative Analysis of Machine Learning Models: A Case Study in Predicting Chronic Kidney Disease," Sustainability, MDPI, vol. 15(3), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2825-:d:1476454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.