IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2708-d1467906.html
   My bibliography  Save this article

An Improved Particle Swarm Optimization Algorithm Based on Variable Neighborhood Search

Author

Listed:
  • Hao Li

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
    These authors contributed equally to this work.)

  • Jianjun Zhan

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
    Cainiao Network, Hangzhou 311100, China
    These authors contributed equally to this work.)

  • Zipeng Zhao

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Haosen Wang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

Various metaheuristic algorithms inspired by nature have been designed to deal with a variety of practical optimization problems. As an excellent metaheuristic algorithm, the improved particle swarm optimization algorithm based on grouping (IPSO) has strong global search capabilities. However, it lacks a strong local search ability and the ability to solve constrained discrete optimization problems. This paper focuses on improving these two aspects of the IPSO algorithm. Based on IPSO, we propose an improved particle swarm optimization algorithm based on variable neighborhood search (VN-IPSO) and design a 0-1 integer programming solution with constraints. In the experiment, the performance of the VN-IPSO algorithm is fully tested and analyzed using 23 classic benchmark functions (continuous optimization), 6 knapsack problems (discrete optimization), and 10 CEC2017 composite functions (complex functions). The results show that the VN-IPSO algorithm wins 18 first places in the classic benchmark function test set, including 6 first places in the solutions for seven unimodal test functions, indicating a good local search ability. In solving the six knapsack problems, it wins four first places, demonstrating the effectiveness of the 0-1 integer programming constraint solution and the excellent solution ability of VN-IPSO in discrete optimization problems. In the test of 10 composite functions, VN-IPSO wins first place four times and ranks the first in the comprehensive ranking, demonstrating its excellent solving ability for complex functions.

Suggested Citation

  • Hao Li & Jianjun Zhan & Zipeng Zhao & Haosen Wang, 2024. "An Improved Particle Swarm Optimization Algorithm Based on Variable Neighborhood Search," Mathematics, MDPI, vol. 12(17), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2708-:d:1467906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agoston E. Eiben & Jim Smith, 2015. "From evolutionary computation to the evolution of things," Nature, Nature, vol. 521(7553), pages 476-482, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Liu & Zhihuai Xiao & Hongtao Li & Dong Liu & Xiao Hu & O.P. Malik, 2019. "Accurate Parameter Estimation of a Hydro-Turbine Regulation System Using Adaptive Fuzzy Particle Swarm Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    2. Fister, Iztok & Iglesias, Andres & Galvez, Akemi & Del Ser, Javier & Osaba, Eneko & Fister, Iztok & Perc, Matjaž & Slavinec, Mitja, 2019. "Novelty search for global optimization," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 865-881.
    3. Manuel Chica & Joaquín Bautista & Jesica de Armas, 2019. "Benefits of robust multiobjective optimization for flexible automotive assembly line balancing," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 75-103, March.
    4. Luciano Ferreira Cruz & Flavia Bernardo Pinto & Lucas Camilotti & Angelo Marcio Oliveira Santanna & Roberto Zanetti Freire & Leandro Santos Coelho, 2022. "Improved multiobjective differential evolution with spherical pruning algorithm for optimizing 3D printing technology parametrization process," Annals of Operations Research, Springer, vol. 319(2), pages 1565-1587, December.
    5. Luo, Kaiping & Shen, Guangya & Li, Liheng & Sun, Jianfei, 2023. "0-1 mathematical programming models for flexible process planning," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1160-1175.
    6. Salcedo-Sanz, S. & Cuadra, L., 2019. "Quasi scale-free geographically embedded networks over DLA-generated aggregates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1286-1305.
    7. Behnam Kia & Allen Mendes & Akshay Parnami & Robin George & Kenneth Mobley & William L Ditto, 2020. "Nonlinear dynamics based machine learning: Utilizing dynamics-based flexibility of nonlinear circuits to implement different functions," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-17, March.
    8. Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.
    9. Peng, Qiao & Liu, Weilong & Shi, Yufeng & Dai, Yuanyuan & Yu, Kunjie & Graham, Byron, 2024. "Multi-objective electricity generation expansion planning towards renewable energy policy objectives under uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    10. Jan Zrimec & Xiaozhi Fu & Azam Sheikh Muhammad & Christos Skrekas & Vykintas Jauniskis & Nora K. Speicher & Christoph S. Börlin & Vilhelm Verendel & Morteza Haghir Chehreghani & Devdatt Dubhashi & Ver, 2022. "Controlling gene expression with deep generative design of regulatory DNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Liu, Weilong & Zhang, Yong & Liu, Kailong & Quinn, Barry & Yang, Xingyu & Peng, Qiao, 2023. "Evolutionary multi-objective optimisation for large-scale portfolio selection with both random and uncertain returns," QBS Working Paper Series 2023/02, Queen's University Belfast, Queen's Business School.
    12. Qian Zhu & Yongqing Li & Zhen Zhang, 2023. "Swarm Robots Search for Multiple Targets Based on Historical Optimal Weighting Grey Wolf Optimization," Mathematics, MDPI, vol. 11(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2708-:d:1467906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.