IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v197y2024ics1364032124001291.html
   My bibliography  Save this article

Multi-objective electricity generation expansion planning towards renewable energy policy objectives under uncertainties

Author

Listed:
  • Peng, Qiao
  • Liu, Weilong
  • Shi, Yufeng
  • Dai, Yuanyuan
  • Yu, Kunjie
  • Graham, Byron

Abstract

Conventional petrol vehicles emit a substantial quantity of greenhouse gases, leading to increasingly serious global warming problems. The expansion and development of renewable power generation technologies is conducive in promoting the use of electric vehicles, which are more environmentally friendly. This paper proposes a multi-objective power expansion model considering renewable energy policy objectives. The model regards the problem as a multi-period optimisation task, taking the newly installed capacity and the power generation capacity of each power generation technology as decision variables, and simulating the uncertain factors in the planning process using Geometric Brownian Motion and Monte Carlo approaches. The optimisation objective of the model is to minimise expected costs, reduce risk and environmental impacts, and incorporate changing policy objectives into the constraints to meet policy makers’ expectations for renewable energy development. Then, a decentralised target search-based multi-objective evolutionary algorithm is proposed to solve the model. Its effectiveness is verified by a numerical example using real data from the Chinese power system. The experimental results show that the proposed algorithm exhibits improved performance compared with benchmark algorithms and provides high quality and diverse Pareto-optimal solutions to decision makers. Finally, the optimal plans for power expansion and generation mix under different preferences and policy objectives are discussed and corresponding recommendations are made.

Suggested Citation

  • Peng, Qiao & Liu, Weilong & Shi, Yufeng & Dai, Yuanyuan & Yu, Kunjie & Graham, Byron, 2024. "Multi-objective electricity generation expansion planning towards renewable energy policy objectives under uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001291
    DOI: 10.1016/j.rser.2024.114406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124001291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Trishna & Krishnan, Venkat & McCalley, James D., 2015. "Assessing the benefits and economics of bulk energy storage technologies in the power grid," Applied Energy, Elsevier, vol. 139(C), pages 104-118.
    2. Alishahi, Ehsan & Moghaddam, Mohsen P. & Sheikh-El-Eslami, Mohammad K., 2011. "An investigation on the impacts of regulatory interventions on wind power expansion in generation planning," Energy Policy, Elsevier, vol. 39(8), pages 4614-4623, August.
    3. Zhang, Mingming & Tang, Yamei & Liu, Liyun & Zhou, Dequn, 2022. "Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Seddighi, Amir Hossein & Ahmadi-Javid, Amir, 2015. "Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment," Energy, Elsevier, vol. 86(C), pages 9-18.
    5. P. Massé & R. Gibrat, 1957. "Application of Linear Programming to Investments in the Electric Power Industry," Management Science, INFORMS, vol. 3(2), pages 149-166, January.
    6. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    7. Chen, Siyuan & Liu, Pei & Li, Zheng, 2019. "Multi-regional power generation expansion planning with air pollutants emission constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 382-394.
    8. Pombo, Daniel Vázquez & Martinez-Rico, Jon & Spataru, Sergiu V. & Bindner, Henrik W. & Sørensen, Poul E., 2023. "Decarbonizing energy islands with flexibility-enabling planning: The case of Santiago, Cape Verde," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Santisirisomboon, Jerasorn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2001. "Impacts of biomass power generation and CO2 taxation on electricity generation expansion planning and environmental emissions," Energy Policy, Elsevier, vol. 29(12), pages 975-985, October.
    10. Peng, Qiao & Liu, Weilong & Zhang, Yong & Zeng, Shihong & Graham, Byron, 2023. "Generation planning for power companies with hybrid production technologies under multiple renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    11. Yan, Yue & Sun, Mei & Guo, Zhilong, 2022. "How do carbon cap-and-trade mechanisms and renewable portfolio standards affect renewable energy investment?," Energy Policy, Elsevier, vol. 165(C).
    12. Setya Budi, Rizki Firmansyah & Sarjiya, & Hadi, Sasongko Pramono, 2022. "Indonesia's deregulated generation expansion planning model based on mixed strategy game theory model for determining the optimal power purchase agreement," Energy, Elsevier, vol. 260(C).
    13. Rajesh, K. & Karthikeyan, K. & Kannan, S. & Thangaraj, C., 2016. "Generation expansion planning based on solar plants with storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 953-964.
    14. Agoston E. Eiben & Jim Smith, 2015. "From evolutionary computation to the evolution of things," Nature, Nature, vol. 521(7553), pages 476-482, May.
    15. Chen, Siyuan & Li, Zheng & Li, Weiqi, 2021. "Integrating high share of renewable energy into power system using customer-sited energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    18. Zhang, Xiaoyue & Huang, Guohe & Xie, Yulei & Liu, Lirong & Song, Tangnyu, 2022. "A coupled non-deterministic optimization and mixed-level factorial analysis model for power generation expansion planning – A case study of Jing-Jin-Ji metropolitan region, China," Applied Energy, Elsevier, vol. 311(C).
    19. Luz, Thiago & Moura, Pedro & de Almeida, Aníbal, 2018. "Multi-objective power generation expansion planning with high penetration of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2637-2643.
    20. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    21. Kuang, Wei, 2021. "Which clean energy sectors are attractive? A portfolio diversification perspective," Energy Economics, Elsevier, vol. 104(C).
    22. Carlo Lucheroni & Carlo Mari, 2021. "Internal hedging of intermittent renewable power generation and optimal portfolio selection," Annals of Operations Research, Springer, vol. 299(1), pages 873-893, April.
    23. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    2. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    3. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    4. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    5. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    6. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    7. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    8. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    9. Peng, Qiao & Liu, Weilong & Zhang, Yong & Zeng, Shihong & Graham, Byron, 2023. "Generation planning for power companies with hybrid production technologies under multiple renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    12. Wang, Ni & Heijnen, Petra W. & Imhof, Pieter J., 2020. "A multi-actor perspective on multi-objective regional energy system planning," Energy Policy, Elsevier, vol. 143(C).
    13. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    14. Fitiwi, Desta & Lynch, Muireann Á. & Bertsch, Valentin, 2019. "Optimal development of electricity generation mix considering fossil fuel phase-out and strategic multi-area interconnection," Papers WP616, Economic and Social Research Institute (ESRI).
    15. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    16. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    17. Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).
    18. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Javadi, Mohammad Sadegh & Razavi, Seyed-Ehsan & Ahmadi, Abdollah & Siano, Pierluigi, 2019. "A novel approach for distant wind farm interconnection: Iran South-West wind farms integration," Renewable Energy, Elsevier, vol. 140(C), pages 737-750.
    20. Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.