IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2635-d1463494.html
   My bibliography  Save this article

Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning

Author

Listed:
  • Sichen Ding

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

  • Gaiyun Liu

    (Groupe de Recherche en Electrotechnique et Automatique du Havre, Université Le Havre Normandie, 76600 Le Havre, France)

  • Li Yin

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

  • Jianzhou Wang

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

  • Zhiwu Li

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

Abstract

This paper addresses the problem of cyber-attack detection in a discrete event system by proposing a novel model. The model utilizes graph convolutional networks to extract spatial features from event sequences. Subsequently, it employs gated recurrent units to re-extract spatio-temporal features from these spatial features. The obtained spatio-temporal features are then fed into an attention model. This approach enables the model to learn the importance of different event sequences, ensuring that it is sufficiently general for identifying cyber-attacks, obviating the need to specify attack types. Compared with traditional methods that rely on synchronous product computations to synthesize diagnosers, our deep learning-based model circumvents state explosion problems. Our method facilitates real-time and efficient cyber-attack detection, eliminating the necessity to specifically identify system states or distinguish attack types, thereby significantly simplifying the diagnostic process. Additionally, we set an adjustable probability threshold to determine whether an event sequence has been compromised, allowing for customization to meet diverse requirements. Experimental results demonstrate that the proposed method performs well in cyber-attack detection, achieving over 99.9 % accuracy at a 1 % threshold and a weighted F1-score of 0.8126, validating its superior performance.

Suggested Citation

  • Sichen Ding & Gaiyun Liu & Li Yin & Jianzhou Wang & Zhiwu Li, 2024. "Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning," Mathematics, MDPI, vol. 12(17), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2635-:d:1463494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    2. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Adnan Jafar & Alessandra Kobayati & Michael A. Tsoukas & Ahmad Haidar, 2024. "Personalized insulin dosing using reinforcement learning for high-fat meals and aerobic exercises in type 1 diabetes: a proof-of-concept trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    5. Artur Kwasek & Maria Kocot & Izabela Gontarek & Igor Protasowicki & Bartosz Blaszczak, 2024. "Negative Faces of Artificial Intelligence in the Conditions of the Knowledge-Based Economy," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 465-477.
    6. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    8. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    9. Zhaobin Mo & Xuan Di & Rongye Shi, 2023. "Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection," Games, MDPI, vol. 14(1), pages 1-13, January.
    10. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    11. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    12. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    13. José A. Torres-León & Marco A. Moreno-Armendáriz & Hiram Calvo, 2024. "Representing the Information of Multiplayer Online Battle Arena (MOBA) Video Games Using Convolutional Accordion Auto-Encoder (A 2 E) Enhanced by Attention Mechanisms," Mathematics, MDPI, vol. 12(17), pages 1-19, September.
    14. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    15. Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
    16. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
    18. Karwowski, Jan & Mańdziuk, Jacek, 2019. "A Monte Carlo Tree Search approach to finding efficient patrolling schemes on graphs," European Journal of Operational Research, Elsevier, vol. 277(1), pages 255-268.
    19. Young Joon Park & Yoon Sang Cho & Seoung Bum Kim, 2019. "Multi-agent reinforcement learning with approximate model learning for competitive games," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-20, September.
    20. Hai Wang & Shengnan Chen, 2023. "Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends," Energies, MDPI, vol. 16(3), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2635-:d:1463494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.