IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2635-d1463494.html
   My bibliography  Save this article

Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning

Author

Listed:
  • Sichen Ding

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

  • Gaiyun Liu

    (Groupe de Recherche en Electrotechnique et Automatique du Havre, Université Le Havre Normandie, 76600 Le Havre, France)

  • Li Yin

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

  • Jianzhou Wang

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

  • Zhiwu Li

    (Institute of Systems Engineering, Macau University of Science and Technology, Macao SAR, China)

Abstract

This paper addresses the problem of cyber-attack detection in a discrete event system by proposing a novel model. The model utilizes graph convolutional networks to extract spatial features from event sequences. Subsequently, it employs gated recurrent units to re-extract spatio-temporal features from these spatial features. The obtained spatio-temporal features are then fed into an attention model. This approach enables the model to learn the importance of different event sequences, ensuring that it is sufficiently general for identifying cyber-attacks, obviating the need to specify attack types. Compared with traditional methods that rely on synchronous product computations to synthesize diagnosers, our deep learning-based model circumvents state explosion problems. Our method facilitates real-time and efficient cyber-attack detection, eliminating the necessity to specifically identify system states or distinguish attack types, thereby significantly simplifying the diagnostic process. Additionally, we set an adjustable probability threshold to determine whether an event sequence has been compromised, allowing for customization to meet diverse requirements. Experimental results demonstrate that the proposed method performs well in cyber-attack detection, achieving over 99.9 % accuracy at a 1 % threshold and a weighted F1-score of 0.8126, validating its superior performance.

Suggested Citation

  • Sichen Ding & Gaiyun Liu & Li Yin & Jianzhou Wang & Zhiwu Li, 2024. "Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning," Mathematics, MDPI, vol. 12(17), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2635-:d:1463494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    2. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    3. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    4. Ostheimer, Julia & Chowdhury, Soumitra & Iqbal, Sarfraz, 2021. "An alliance of humans and machines for machine learning: Hybrid intelligent systems and their design principles," Technology in Society, Elsevier, vol. 66(C).
    5. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    6. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    7. Mandal, Ankit & Tiwari, Yash & Panigrahi, Prasanta K. & Pal, Mayukha, 2022. "Physics aware analytics for accurate state prediction of dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Adnan Jafar & Alessandra Kobayati & Michael A. Tsoukas & Ahmad Haidar, 2024. "Personalized insulin dosing using reinforcement learning for high-fat meals and aerobic exercises in type 1 diabetes: a proof-of-concept trial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Bossert, Leonie & Hagendorff, Thilo, 2021. "Animals and AI. The role of animals in AI research and application – An overview and ethical evaluation," Technology in Society, Elsevier, vol. 67(C).
    10. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    11. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    13. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    14. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    15. Zhang, Guangming & Zhang, Chao & Wang, Wei & Cao, Huan & Chen, Zhenyu & Niu, Yuguang, 2023. "Offline reinforcement learning control for electricity and heat coordination in a supercritical CHP unit," Energy, Elsevier, vol. 266(C).
    16. Zhaobin Mo & Xuan Di & Rongye Shi, 2023. "Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection," Games, MDPI, vol. 14(1), pages 1-13, January.
    17. Ma, Tao & Yang, Xuzhi & Szabo, Zoltan, 2024. "To switch or not to switch? Balanced policy switching in offline reinforcement learning," LSE Research Online Documents on Economics 124144, London School of Economics and Political Science, LSE Library.
    18. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    19. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2635-:d:1463494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.