IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2234-d1437367.html
   My bibliography  Save this article

Efficient Scheme for the Economic Heston–Hull–White Problem Using Novel RBF-FD Coefficients Derived from Multiquadric Function Integrals

Author

Listed:
  • Tao Liu

    (School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Zixiao Zhao

    (School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Shiyi Ling

    (School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Heyang Chao

    (School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

  • Hasan Fattahi Nafchi

    (Department of Accounting, Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan 81746-73441, Iran)

  • Stanford Shateyi

    (Department of Mathematics and Applied Mathematics, School of Mathematical and Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa)

Abstract

This study presents an efficient method using the local radial basis function finite difference scheme (RBF-FD). The innovative coefficients are derived from the integrals of the multiquadric (MQ) function. Theoretical convergence rates for the coefficients used in function derivative approximation are provided. The proposed scheme utilizes RBF-FD estimations on three-point non-uniform stencils to construct the final approximation on a tensor grid for the 3D Heston–Hull–White (HHW) PDE, which is relevant in economics and mathematical finance. Numerical evidence and comparative analyses validate the results and the proposed scheme.

Suggested Citation

  • Tao Liu & Zixiao Zhao & Shiyi Ling & Heyang Chao & Hasan Fattahi Nafchi & Stanford Shateyi, 2024. "Efficient Scheme for the Economic Heston–Hull–White Problem Using Novel RBF-FD Coefficients Derived from Multiquadric Function Integrals," Mathematics, MDPI, vol. 12(14), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2234-:d:1437367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Hull & Alan White, 2001. "The General Hull–White Model and Supercalibration," Financial Analysts Journal, Taylor & Francis Journals, vol. 57(6), pages 34-43, November.
    2. Malik Zaka Ullah, 2019. "Numerical Solution of Heston-Hull-White Three-Dimensional PDE with a High Order FD Scheme," Mathematics, MDPI, vol. 7(8), pages 1-13, August.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Cao, Jiling & Lian, Guanghua & Roslan, Teh Raihana Nazirah, 2016. "Pricing variance swaps under stochastic volatility and stochastic interest rate," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 72-81.
    6. Tao Liu & Malik Zaka Ullah & Stanford Shateyi & Chao Liu & Yanxiong Yang, 2023. "An Efficient Localized RBF-FD Method to Simulate the Heston–Hull–White PDE in Finance," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Liu & Malik Zaka Ullah & Stanford Shateyi & Chao Liu & Yanxiong Yang, 2023. "An Efficient Localized RBF-FD Method to Simulate the Heston–Hull–White PDE in Finance," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    2. Kim, See-Woo & Kim, Jeong-Hoon, 2018. "Analytic solutions for variance swaps with double-mean-reverting volatility," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 130-144.
    3. Ah-Reum Han & Jeong-Hoon Kim & See-Woo Kim, 2021. "Variance Swaps with Deterministic and Stochastic Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1059-1092, April.
    4. Jiling Cao & Teh Raihana Nazirah Roslan & Wenjun Zhang, 2018. "Pricing Variance Swaps in a Hybrid Model of Stochastic Volatility and Interest Rate with Regime-Switching," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1359-1379, December.
    5. Kim, See-Woo & Kim, Jeong-Hoon, 2019. "Variance swaps with double exponential Ornstein-Uhlenbeck stochastic volatility," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 149-169.
    6. Teh Raihana Nazirah Roslan & Wenjun Zhang & Jiling Cao, 2016. "Pricing variance swaps with stochastic volatility and stochastic interest rate under full correlation structure," Papers 1610.09714, arXiv.org, revised Apr 2020.
    7. Kim, See-Woo & Kim, Jeong-Hoon, 2020. "Pricing generalized variance swaps under the Heston model with stochastic interest rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 1-27.
    8. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    9. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    10. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    11. Almeida, Thiago Ramos, 2024. "Estimating time-varying factors’ variance in the string-term structure model with stochastic volatility," Research in International Business and Finance, Elsevier, vol. 70(PA).
    12. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    13. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    14. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    15. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    16. Gaetano Bua & Daniele Marazzina, 2021. "On the application of Wishart process to the pricing of equity derivatives: the multi-asset case," Computational Management Science, Springer, vol. 18(2), pages 149-176, June.
    17. Prosper Dovonon, 2013. "Conditionally Heteroskedastic Factor Models With Skewness And Leverage Effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1110-1137, November.
    18. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    19. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    20. Javier de Frutos & Victor Gaton, 2018. "An extension of Heston's SV model to Stochastic Interest Rates," Papers 1809.09069, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2234-:d:1437367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.