IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2147-d1431219.html
   My bibliography  Save this article

Time-Series Prediction of Electricity Load for Charging Piles in a Region of China Based on Broad Learning System

Author

Listed:
  • Liansong Yu

    (School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
    State Grid Electric Power Research Institute Wuhan Nanrui Co., Ltd., Wuhan 430070, China
    These authors contributed equally to this work.)

  • Xiaohu Ge

    (School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
    These authors contributed equally to this work.)

Abstract

This paper introduces a novel electricity load time-series prediction model, utilizing a broad learning system to tackle the challenge of low prediction accuracy caused by the unpredictable nature of electricity load sequences in a specific region of China. First, a correlation analysis with mutual information is utilized to identify the key factors affecting the electricity load. Second, variational mode decomposition is employed to obtain different mode information, and then a broad learning system is utilized to build a prediction model with different mode information. Finally, particle swarm optimization is used to fuse the prediction models under different modes. Simulation experiments using real data validate the efficiency of the proposed method, demonstrating that it offers higher accuracy compared to advanced modeling techniques and can assist in optimal electricity-load scheduling decision-making. Additionally, the R 2 of the proposed model is 0.9831, the P R M S E is 21.8502, the P M A E is 17.0097, and the P M A P E is 2.6468.

Suggested Citation

  • Liansong Yu & Xiaohu Ge, 2024. "Time-Series Prediction of Electricity Load for Charging Piles in a Region of China Based on Broad Learning System," Mathematics, MDPI, vol. 12(13), pages 1-12, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2147-:d:1431219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    2. Wang, Shuai & Ma, Hongyan & Zhang, Yingda & Li, Shengyan & He, Wei, 2023. "Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengyu Yang & Han Zhou & Ximing Chen & Jiejun Huang, 2024. "Demand Time Series Prediction of Stacked Long Short-Term Memory Electric Vehicle Charging Stations Based on Fused Attention Mechanism," Energies, MDPI, vol. 17(9), pages 1-17, April.
    2. Izadi, Mohammad Javad & Hassani, Pourya & Raeesi, Mehrdad & Ahmadi, Pouria, 2024. "A novel WaveNet-GRU deep learning model for PEM fuel cells degradation prediction based on transfer learning," Energy, Elsevier, vol. 293(C).
    3. Wang, Yi & Von Krannichfeldt, Leandro & Zufferey, Thierry & Toubeau, Jean-François, 2021. "Short-term nodal voltage forecasting for power distribution grids: An ensemble learning approach," Applied Energy, Elsevier, vol. 304(C).
    4. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    5. Ren, Fei & Tian, Chenlu & Zhang, Guiqing & Li, Chengdong & Zhai, Yuan, 2022. "A hybrid method for power demand prediction of electric vehicles based on SARIMA and deep learning with integration of periodic features," Energy, Elsevier, vol. 250(C).
    6. Zhou, Kaile & Hu, Dingding & Li, Fangyi, 2022. "Impact of COVID-19 on private driving behavior: Evidence from electric vehicle charging data," Transport Policy, Elsevier, vol. 125(C), pages 164-178.
    7. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    8. Qian Wang & Xiaolong Yang & Xiaoyu Yu & Jingwen Yun & Jinbo Zhang, 2023. "Electric Vehicle Participation in Regional Grid Demand Response: Potential Analysis Model and Architecture Planning," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    9. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    10. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    11. Bo Hu & Jian Xu & Zuoxia Xing & Pengfei Zhang & Jia Cui & Jinglu Liu, 2022. "Short-Term Combined Forecasting Method of Park Load Based on CEEMD-MLR-LSSVR-SBO," Energies, MDPI, vol. 15(8), pages 1-14, April.
    12. Jamali Jahromi, Ali & Mohammadi, Mohammad & Afrasiabi, Shahabodin & Afrasiabi, Mousa & Aghaei, Jamshid, 2022. "Probability density function forecasting of residential electric vehicles charging profile," Applied Energy, Elsevier, vol. 323(C).
    13. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
    14. Zhiyuan Zhuang & Xidong Zheng & Zixing Chen & Tao Jin & Zengqin Li, 2022. "Load Forecast of Electric Vehicle Charging Station Considering Multi-Source Information and User Decision Modification," Energies, MDPI, vol. 15(19), pages 1-13, September.
    15. Dan Zhou & Zhonghao Guo & Yuzhe Xie & Yuheng Hu & Da Jiang & Yibin Feng & Dong Liu, 2022. "Using Bayesian Deep Learning for Electric Vehicle Charging Station Load Forecasting," Energies, MDPI, vol. 15(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2147-:d:1431219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.