IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1902-d1418146.html
   My bibliography  Save this article

A Method for Evaluating the Data Integrity of Microseismic Monitoring Systems in Mines Based on a Gradient Boosting Algorithm

Author

Listed:
  • Cong Wang

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Shandong Succeed Mining Safety Engineering Co. Ltd., Jinan 271000, China)

  • Kai Zhan

    (College of Geophysics, Chengdu University of Technology, Chengdu 610059, China)

  • Xigui Zheng

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Cancan Liu

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Department of Energy Resources Engineering, Research Institute of Energy and Resources, Seoul National University, Seoul 08826, Republic of Korea)

  • Chao Kong

    (Shandong Succeed Mining Safety Engineering Co. Ltd., Jinan 271000, China)

Abstract

Microseismic data are widely employed for assessing rockburst risks; however, significant disparities exist in the monitoring capabilities of seismic networks across different mines, and none can capture a complete dataset of microseismic events. Such differences introduce unfairness when applying the same methodologies to evaluate rockburst risks in various mines. This paper proposes a method for assessing the monitoring capability of seismic networks applicable to heterogeneous media in mines. It achieves this by integrating three gradient boosting algorithms: Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost). Initially, the isolation forest algorithm is utilized for preliminary data cleansing, and feature engineering is constructed based on the relative locations of event occurrences to monitoring stations and the working face. Subsequently, the optimal hyperparameters for three models are searched for using 8508 microseismic events from the a Coal Mine in eastern China as samples, and 18 sub-models are trained. Model weights are then determined based on the performance metrics of different algorithms, and an ensemble model is created to predict the monitoring capability of the network. The model demonstrated excellent performance on the training and test sets, achieving log loss, accuracy, and recall scores of 7.13, 0.81, and 0.76 and 6.99, 0.80, and 0.77, respectively. Finally, the method proposed in this study was compared with traditional approaches. The results indicated that, under the same conditions, the proposed method calculated the monitoring capability of the key areas to be 11% lower than that of the traditional methods. The reasons for the differences between these methods were identified and partially explained.

Suggested Citation

  • Cong Wang & Kai Zhan & Xigui Zheng & Cancan Liu & Chao Kong, 2024. "A Method for Evaluating the Data Integrity of Microseismic Monitoring Systems in Mines Based on a Gradient Boosting Algorithm," Mathematics, MDPI, vol. 12(12), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1902-:d:1418146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu Cai & Linming Dou & Siyuan Gong & Zhenlei Li & Shasha Yuan, 2015. "Quantitative analysis of seismic velocity tomography in rock burst hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2453-2465, February.
    2. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    2. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    3. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    4. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    5. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    6. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    7. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    8. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    9. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    10. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    11. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    12. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    13. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    14. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    15. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    16. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    17. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    18. Matthias Bogaert & Michel Ballings & Dirk Van den Poel, 2018. "Evaluating the importance of different communication types in romantic tie prediction on social media," Annals of Operations Research, Springer, vol. 263(1), pages 501-527, April.
    19. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    20. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1902-:d:1418146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.