IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924002480.html
   My bibliography  Save this article

Dynamical investigation and encryption application of a new multiscroll memristive chaotic system with rich offset boosting features

Author

Listed:
  • Xin, Zeng-Jun
  • Lai, Qiang

Abstract

The paper introduces a novel memristive chaotic system characterized by an infinite number of index-2 saddle foci, enabling it to generate multiscroll chaos and exhibit extreme multistability. Bifurcation diagrams, phase portraits and other methods are employed to examine the stabilities of equilibria and complex dynamics. It shows that by modifying the function of memristor, the system can produce multiscroll attractors with varying scroll counts. Furthermore, it can be decomposed into coexisting chaotic attractors at different locations, and this decomposition is influenced by adjustments in parameters and initial values, illustrating the impact of initial-relied and parameter-relied offset boosting. With variations in the parameter, the coexisting chaotic attractors will undergo a bifurcation, ultimately transforming into coexisting periodic attractors. The image encryption application of the system is explored, introducing an efficient chaos-based algorithm applied to encrypt Internet of Medical Things (IoMT) images, followed by a comprehensive performance evaluation.

Suggested Citation

  • Xin, Zeng-Jun & Lai, Qiang, 2024. "Dynamical investigation and encryption application of a new multiscroll memristive chaotic system with rich offset boosting features," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002480
    DOI: 10.1016/j.chaos.2024.114696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924002480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Peng, Hongxin & Ji’e, Musha & Du, Xinyu & Duan, Shukai & Wang, Lidan, 2023. "Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Qi, Guoyuan & Chen, Guanrong & Du, Shengzhi & Chen, Zengqiang & Yuan, Zhuzhi, 2005. "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 295-308.
    4. Yan, Shaohui & Gu, Binxian & Wang, Ertong & Ren, Yu, 2023. "Finite-time synchronization of multi-scroll hyperchaotic system and its application in image encryption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 391-409.
    5. Wu, Jiening & Wang, Lidan & Chen, Guanrong & Duan, Shukai, 2016. "A memristive chaotic system with heart-shaped attractors and its implementation," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 20-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiyin & Qi, Guoyuan, 2017. "Mechanical analysis of Chen chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 173-177.
    2. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Wu, Wen-Juan & Chen, Zeng-Qiang & Yuan, Zhu-Zhi, 2009. "A computer-assisted proof for the existence of horseshoe in a novel chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2756-2761.
    4. Ghamati, Mina & Balochian, Saeed, 2015. "Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 111-117.
    5. Zhang, Jie & Zuo, Jiangang & Wang, Meng & Guo, Yan & Xie, Qinggang & Hou, Jinyou, 2024. "Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Lijuan Chen & Mingchu Yu & Jinnan Luo & Jinpeng Mi & Kaibo Shi & Song Tang, 2024. "Dynamic Analysis and FPGA Implementation of a New Linear Memristor-Based Hyperchaotic System with Strong Complexity," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    7. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Yinfang Ye & Jianbin He, 2024. "Constructing a New Multi-Scroll Chaotic System and Its Circuit Design," Mathematics, MDPI, vol. 12(13), pages 1-14, June.
    9. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Bo Wang, 2019. "Results on a Novel Piecewise-Linear Memristor-Based Chaotic System," Complexity, Hindawi, vol. 2019, pages 1-6, January.
    11. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    12. Rodrigo Méndez-Ramírez & Adrian Arellano-Delgado & César Cruz-Hernández & Rigoberto Martínez-Clark, 2017. "A New Simple Chaotic Lorenz-Type System and Its Digital Realization Using a TFT Touch-Screen Display Embedded System," Complexity, Hindawi, vol. 2017, pages 1-13, July.
    13. Qi, Guoyuan & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Chen, Guanrong, 2009. "A new hyperchaotic system and its circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2544-2549.
    14. Guohui Li & Xiangyu Zhang & Hong Yang, 2019. "Numerical Analysis, Circuit Simulation, and Control Synchronization of Fractional-Order Unified Chaotic System," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    15. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    16. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    17. Zhang, Jianxiong & Tang, Wansheng, 2009. "Analysis and control for a new chaotic system via piecewise linear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2181-2190.
    18. Lai, Qiang & Chen, Zhijie, 2023. "Grid-scroll memristive chaotic system with application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    19. Ahmad Taher Azar & Christos Volos & Nikolaos A. Gerodimos & George S. Tombras & Viet-Thanh Pham & Ahmed G. Radwan & Sundarapandian Vaidyanathan & Adel Ouannas & Jesus M. Munoz-Pacheco, 2017. "A Novel Chaotic System without Equilibrium: Dynamics, Synchronization, and Circuit Realization," Complexity, Hindawi, vol. 2017, pages 1-11, February.
    20. Daniel Ríos-Rivera & Alma Y. Alanis & Edgar N. Sanchez, 2020. "Neural-Impulsive Pinning Control for Complex Networks Based on V-Stability," Mathematics, MDPI, vol. 8(9), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.