IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v120y2017icp87-94.html
   My bibliography  Save this article

Constructing initial estimators in one-step estimation procedures of nonlinear regression

Author

Listed:
  • Linke, Yu.Yu.
  • Borisov, I.S.

Abstract

We discuss an approach to construct explicitly calculable consistent estimators for parameters of some nonlinear regression models. The estimators of such a kind can be used as initial estimators in one-step estimation procedures for unknown parameters of these models.

Suggested Citation

  • Linke, Yu.Yu. & Borisov, I.S., 2017. "Constructing initial estimators in one-step estimation procedures of nonlinear regression," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 87-94.
  • Handle: RePEc:eee:stapro:v:120:y:2017:i:c:p:87-94
    DOI: 10.1016/j.spl.2016.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216301857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Fan & J. Chen, 1999. "One‐step local quasi‐likelihood estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 927-943.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2022. "Universal Local Linear Kernel Estimators in Nonparametric Regression," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    2. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    3. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2024. "Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency," Mathematics, MDPI, vol. 12(12), pages 1-23, June.
    4. Linke, Yuliana Yu., 2017. "Asymptotic normality of one-step M-estimators based on non-identically distributed observations," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 216-221.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunming Zhang, 2008. "Prediction Error Estimation Under Bregman Divergence for Non‐Parametric Regression and Classification," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 496-523, September.
    2. Linke, Yuliana Yu., 2017. "Asymptotic normality of one-step M-estimators based on non-identically distributed observations," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 216-221.
    3. Jianwen Cai & Jianqing Fan & Jiancheng Jiang & Haibo Zhou, 2008. "Partially linear hazard regression with varying coefficients for multivariate survival data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 141-158, February.
    4. Talamakrouni, Majda & El Ghouch, Anouar & Van Keilegom, Ingrid, 2016. "Parametrically guided local quasi-likelihood with censored data," LIDAM Discussion Papers ISBA 2016011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Zhao, Xiaobing & Zhou, Xian, 2012. "Estimation of medical costs by copula models with dynamic change of health status," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 480-491.
    6. Hafner, Christian & Linton, Oliver & Wang, Linqi, 2022. "Dynamic Autoregressive Liquidity (DArLiQ)," LIDAM Discussion Papers ISBA 2022009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    8. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    9. Minggen Lu, 2017. "Efficient estimation of quasi-likelihood models using B-splines," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1099-1127, October.
    10. Zhao, Yan-Yong & Lin, Jin-Guan & Xu, Pei-Rong & Ye, Xu-Guo, 2015. "Orthogonality-projection-based estimation for semi-varying coefficient models with heteroscedastic errors," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 204-221.
    11. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    12. Chen, Jia & Li, Degui & Zhang, Lixin, 2010. "Robust estimation in a nonlinear cointegration model," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 706-717, March.
    13. Shangyu Xie & Yong Zhou & Alan T. K. Wan, 2014. "A Varying-Coefficient Expectile Model for Estimating Value at Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 576-592, October.
    14. Masao Ueki & Kaoru Fueda, 2010. "Boosting local quasi-likelihood estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 235-248, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:120:y:2017:i:c:p:87-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.