IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1828-d1413518.html
   My bibliography  Save this article

Bias-Correction Methods for the Unit Exponential Distribution and Applications

Author

Listed:
  • Hua Xin

    (School of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA)

  • Ya-Yen Fan

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan)

  • Tzong-Ru Tsai

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan)

Abstract

The bias of the maximum likelihood estimator can cause a considerable estimation error if the sample size is small. To reduce the bias of the maximum likelihood estimator under the small sample situation, the maximum likelihood and parametric bootstrap bias-correction methods are proposed in this study to obtain more reliable maximum likelihood estimators of the unit exponential distribution parameters. The procedure to implement the bias-corrected maximum likelihood estimation method is derived analytically, and the steps to obtain the bias-corrected bootstrap estimators are presented. The simulation results show that the proposed maximum likelihood bootstrap bias-correction method can significantly reduce the bias and mean squared error of the maximum likelihood estimators for most of the parameter combinations in the simulation study. A soil moisture data set and a numerical example are used for illustration.

Suggested Citation

  • Hua Xin & Yuhlong Lio & Ya-Yen Fan & Tzong-Ru Tsai, 2024. "Bias-Correction Methods for the Unit Exponential Distribution and Applications," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1828-:d:1413518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan S. Bakouch & Tassaddaq Hussain & Marina Tošić & Vladica S. Stojanović & Najla Qarmalah, 2023. "Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling," Mathematics, MDPI, vol. 11(19), pages 1-22, October.
    2. Luiz R. Nakamura & Pedro H. R. Cerqueira & Thiago G. Ramires & Rodrigo R. Pescim & R. A. Rigby & Dimitrios M. Stasinopoulos, 2019. "A new continuous distribution on the unit interval applied to modelling the points ratio of football teams," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(3), pages 416-431, February.
    3. Cordeiro, Gauss M. & Klein, Ruben, 1994. "Bias correction in ARMA models," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 169-176, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Reath & Jianping Dong & Min Wang, 2018. "Improved parameter estimation of the log-logistic distribution with applications," Computational Statistics, Springer, vol. 33(1), pages 339-356, March.
    2. Ferrari, Silvia L. P. & Cribari-Neto, Francisco, 1998. "On bootstrap and analytical bias corrections," Economics Letters, Elsevier, vol. 58(1), pages 7-15, January.
    3. Reinsel, Gregory C. & Cheang, Wai-Kwong, 2003. "Approximate ML and REML estimation for regression models with spatial or time series AR(1) noise," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 123-135, April.
    4. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    5. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    6. Yong Bao, 2015. "Should We Demean the Data?," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 163-171, May.
    7. Ghitany, M.E. & Al-Mutairi, D.K. & Balakrishnan, N. & Al-Enezi, L.J., 2013. "Power Lindley distribution and associated inference," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 20-33.
    8. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    9. Cordeiro, Gauss M. & Vasconcellos, Klaus L. P., 1997. "Bias correction for a class of multivariate nonlinear regression models," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 155-164, September.
    10. Mentz, R. P. & Morettin, P. A. & Toloi, C. M. C., 1999. "On least-squares estimation of the residual variance in the first-order moving average model," Computational Statistics & Data Analysis, Elsevier, vol. 29(4), pages 485-499, February.
    11. David E. Giles, 2012. "A Note on Improved Estimation for the Topp-Leone Distribution," Econometrics Working Papers 1203, Department of Economics, University of Victoria.
    12. David E. Giles, 2021. "Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 59-77, December.
    13. F. Cribari-Neto & G.M. Cordeiro, 1995. "On Bartlett and Bartlett-Type Corrections," Econometrics 9507001, University Library of Munich, Germany.
    14. Cordeiro, Gauss M., 2008. "Corrected Maximum Likelihood Estimators in Linear Heteroskedastic Regression Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(1), May.
    15. Sigrunn H. Sørbye & Pedro G. Nicolau & Håvard Rue, 2022. "Finite-sample properties of estimators for first and second order autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 577-598, October.
    16. Tzong-Ru Tsai & Hua Xin & Ya-Yen Fan & Yuhlong Lio, 2022. "Bias-Corrected Maximum Likelihood Estimation and Bayesian Inference for the Process Performance Index Using Inverse Gaussian Distribution," Stats, MDPI, vol. 5(4), pages 1-18, November.
    17. Xiao Ling & David E. Giles, 2014. "Bias Reduction for the Maximum Likelihood Estimator of the Parameters of the Generalized Rayleigh Family of Distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(8), pages 1778-1792, April.
    18. David E. Giles & Hui Feng, 2009. "Bias of the Maximum Likelihood Estimators of the Two-Parameter Gamma Distribution Revisited," Econometrics Working Papers 0908, Department of Economics, University of Victoria.
    19. Gauss Cordeiro & Lúcia Barroso, 2007. "A third-order bias corrected estimate in generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 76-89, May.
    20. Vladica S. Stojanović & Tanja Jovanović Spasojević & Mihailo Jovanović, 2024. "Laplace-Logistic Unit Distribution with Application in Dynamic and Regression Analysis," Mathematics, MDPI, vol. 12(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1828-:d:1413518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.