IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v43y2014i8p1778-1792.html
   My bibliography  Save this article

Bias Reduction for the Maximum Likelihood Estimator of the Parameters of the Generalized Rayleigh Family of Distributions

Author

Listed:
  • Xiao Ling
  • David E. Giles

Abstract

We derive analytic expressions for the biases, to O(n− 1), of the maximum likelihood estimators of the parameters of the generalized Rayleigh distribution family. Using these expressions to bias-correct the estimators is found to be extremely effective in terms of bias reduction, and generally results in a small reduction in relative mean squared error. In general, the analytic bias-corrected estimators are also found to be superior to the alternative of bias-correction via the bootstrap.

Suggested Citation

  • Xiao Ling & David E. Giles, 2014. "Bias Reduction for the Maximum Likelihood Estimator of the Parameters of the Generalized Rayleigh Family of Distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(8), pages 1778-1792, April.
  • Handle: RePEc:taf:lstaxx:v:43:y:2014:i:8:p:1778-1792
    DOI: 10.1080/03610926.2012.675114
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.675114
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.675114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Meagher Kieron J & Teo Ernie G.S. & Wang Wen, 2008. "A Duopoly Location Toolkit: Consumer Densities Which Yield Unique Spatial Duopoly Equilibria," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 8(1), pages 1-23, April.
    2. Kenneth W. Clements & Antony Selvanathan & Saroja Selvanathan, 1996. "Applied Demand Analysis: A Survey," The Economic Record, The Economic Society of Australia, vol. 72(216), pages 63-81, March.
    3. Beenstock, Michael, 1995. "The stochastic economics of windpower," Energy Economics, Elsevier, vol. 17(1), pages 27-37, January.
    4. Cordeiro, Gauss M. & Klein, Ruben, 1994. "Bias correction in ARMA models," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 169-176, February.
    5. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Bias-Corrected MLEs
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-05-01 21:03:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    2. Hasan, Iftekhar & Lozano-Vivas, Ana, 2002. "Organizational Form and Expense Preference: Spanish Experience," Bulletin of Economic Research, Wiley Blackwell, vol. 54(2), pages 135-150, April.
    3. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    4. Król, Michał, 2012. "Product differentiation decisions under ambiguous consumer demand and pessimistic expectations," International Journal of Industrial Organization, Elsevier, vol. 30(6), pages 593-604.
    5. Subhash C. Ray, 2004. "A Simple Statistical Test of Violation of the Weak Axiom of Cost Minimization," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 39(1), pages 111-121, January.
    6. Raushan Bokusheva & Lukáš Čechura & Subal C. Kumbhakar, 2023. "Estimating persistent and transient technical efficiency and their determinants in the presence of heterogeneity and endogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 450-472, June.
    7. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    8. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    9. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    10. Wu, Yanrui, 1995. "The productive efficiency of Chinese iron and steel firms A stochastic frontier analysis," Resources Policy, Elsevier, vol. 21(3), pages 215-222, September.
    11. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    12. Kui-Wai Li & Tung Liu & Lihong Yun, 2007. "Technology Progress, Efficiency, and Scale of Economy in Post-reform China," Working Papers 200701, Ball State University, Department of Economics, revised Apr 2007.
    13. Firna Varina & Sri Hartoyo & Nunung Kusnadi & Amzul Rifin, 2020. "The Determinants of Technical Efficiency of Oil Palm Smallholders in Indonesia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 89-93.
    14. Dyack, Brenda & Goddard, Ellen W., 2001. "The Rise of Red and the Wane of White: Wine Demand in Ontario Canada," 2001 Conference (45th), January 23-25, 2001, Adelaide, Australia 125617, Australian Agricultural and Resource Economics Society.
    15. Rossi, Martín, 2000. "Análisis de eficiencia aplicado a la regulación ¿Es importante la Distribución Elegida para el Término de Ineficiencia?," UADE Textos de Discusión 22_2000, Instituto de Economía, Universidad Argentina de la Empresa.
    16. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    17. Mochebelele, Motsamai T. & Winter-Nelson, Alex, 2000. "Migrant Labor and Farm Technical Efficiency in Lesotho," World Development, Elsevier, vol. 28(1), pages 143-153, January.
    18. Dhehibi, Boubaker & Lachaal, Lassaad & Elloumi, Mohamed & Messaoud, Emna B., 2007. "Measurement and Sources of Technical Inefficiency in the Tunisian Citrus Growing Sector," 103rd Seminar, April 23-25, 2007, Barcelona, Spain 9391, European Association of Agricultural Economists.
    19. Stephen M. Miller & Terrence M. Clauretie & Thomas M. Springer, 2006. "Economies Of Scale And Cost Efficiencies: A Panel‐Data Stochastic‐Frontier Analysis Of Real Estate Investment Trusts," Manchester School, University of Manchester, vol. 74(4), pages 483-499, July.
    20. Anthony Rezitis & Kostas Tsiboukas & Stauros Tsoukalas, 2002. "Measuring technical efficiency in the Greek agricultural sector," Applied Economics, Taylor & Francis Journals, vol. 34(11), pages 1345-1357.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:43:y:2014:i:8:p:1778-1792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.