IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i1d10.1007_s00180-017-0738-y.html
   My bibliography  Save this article

Improved parameter estimation of the log-logistic distribution with applications

Author

Listed:
  • Joseph Reath

    (Michigan Technological University)

  • Jianping Dong

    (Michigan Technological University)

  • Min Wang

    (Michigan Technological University)

Abstract

In this paper, we deal with parameter estimation of the log-logistic distribution. It is widely known that the maximum likelihood estimators (MLEs) are usually biased in the case of the finite sample size. This motivates a study of obtaining unbiased or nearly unbiased estimators for this distribution. Specifically, we consider a certain ‘corrective’ approach and Efron’s bootstrap resampling method, which both can reduce the biases of the MLEs to the second order of magnitude. As a comparison, the commonly used generalized moments method is also considered for estimating parameters. Monte Carlo simulation studies are conducted to compare the performances of the various estimators under consideration. Finally, two real-data examples are analyzed to illustrate the potential usefulness of the proposed estimators, especially when the sample size is small or moderate.

Suggested Citation

  • Joseph Reath & Jianping Dong & Min Wang, 2018. "Improved parameter estimation of the log-logistic distribution with applications," Computational Statistics, Springer, vol. 33(1), pages 339-356, March.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0738-y
    DOI: 10.1007/s00180-017-0738-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0738-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0738-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    2. Jacob Schwartz & David E. Giles, 2011. "Biased-Reduced Maximum Likelihood Estimation for the Zero-Inflated Poisson Distribution," Econometrics Working Papers 1102, Department of Economics, University of Victoria.
    3. David E. Giles & Hui Feng & Ryan T. Godwin, 2016. "Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(8), pages 2465-2483, April.
    4. Jacob Schwartz & David E. Giles, 2016. "Bias-reduced maximum likelihood estimation of the zero-inflated Poisson distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(2), pages 465-478, January.
    5. Cordeiro, Gauss M. & Klein, Ruben, 1994. "Bias correction in ARMA models," Statistics & Probability Letters, Elsevier, vol. 19(3), pages 169-176, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjita Pandey & Pulkit Srivastava & Neera Kumari, 2021. "On some inferential aspects of length biased log-logistic model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 154-163, February.
    2. Xiaofang He & Wangxue Chen & Wenshu Qian, 2020. "Maximum likelihood estimators of the parameters of the log-logistic distribution," Statistical Papers, Springer, vol. 61(5), pages 1875-1892, October.
    3. Lucas David Ribeiro-Reis, 2023. "The Log-Logistic Regression Model Under Censoring Scheme," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-12, June.
    4. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    5. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan T. Godwin & David E. Giles, 2017. "Analytic Bias Correction for Maximum Likelihood Estimators When the Bias Function is Non-Constant," Econometrics Working Papers 1702, Department of Economics, University of Victoria.
    2. David E. Giles, 2012. "A Note on Improved Estimation for the Topp-Leone Distribution," Econometrics Working Papers 1203, Department of Economics, University of Victoria.
    3. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    4. Demos Antonis & Kyriakopoulou Dimitra, 2019. "Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-20, January.
    5. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    6. Costa-Font, Joan & Jimenez-Martin, Sergi & Vilaplana, Cristina, 2018. "Does long-term care subsidization reduce hospital admissions and utilization?," Journal of Health Economics, Elsevier, vol. 58(C), pages 43-66.
    7. David E. Giles, 2021. "Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 59-77, December.
    8. F. Cribari-Neto & G.M. Cordeiro, 1995. "On Bartlett and Bartlett-Type Corrections," Econometrics 9507001, University Library of Munich, Germany.
    9. David E. Giles & Hui Feng, 2009. "Bias of the Maximum Likelihood Estimators of the Two-Parameter Gamma Distribution Revisited," Econometrics Working Papers 0908, Department of Economics, University of Victoria.
    10. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    11. George Kapetanios, 2003. "Determining the Stationarity Properties of Individual Series in Panel Datasets," Working Papers 495, Queen Mary University of London, School of Economics and Finance.
    12. Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011. "Improved interval estimation of long run response from a dynamic linear model: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
    13. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    14. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    15. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    16. Das, Tirthatanmoy & Polachek, Solomon W., 2017. "Estimating labor force joiners and leavers using a heterogeneity augmented two-tier stochastic frontier," Journal of Econometrics, Elsevier, vol. 199(2), pages 156-172.
    17. Ferrari, Silvia L. P. & Cribari-Neto, Francisco, 1998. "On bootstrap and analytical bias corrections," Economics Letters, Elsevier, vol. 58(1), pages 7-15, January.
    18. Ospina, Raydonal & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2006. "Improved point and interval estimation for a beta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 960-981, November.
    19. Reinsel, Gregory C. & Cheang, Wai-Kwong, 2003. "Approximate ML and REML estimation for regression models with spatial or time series AR(1) noise," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 123-135, April.
    20. Lemonte, Artur J. & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2007. "Improved statistical inference for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4656-4681, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:1:d:10.1007_s00180-017-0738-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.