IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1724-d1406907.html
   My bibliography  Save this article

Double-Observer-Based Bumpless Transfer Control of Switched Positive Systems

Author

Listed:
  • Yahao Yang

    (School of Information and Communication Engineering, Hainan University, Haikou 570228, China)

  • Zhong Huang

    (School of Information and Communication Engineering, Hainan University, Haikou 570228, China)

  • Pei Zhang

    (School of Information and Communication Engineering, Hainan University, Haikou 570228, China)

Abstract

This paper investigates the bumpless transfer control of linear switched positive systems based on state and disturbance observers. First, state and disturbance observers are designed for linear switched positive systems to estimate the state and the disturbance. By combining the designed state observer, the disturbance observer, and the output, a new controller is constructed for the systems. All gain matrices are described in the form of linear programming. By using co-positive Lyapunov functions, the positivity and stability of the closed-loop system can be ensured. In order to achieve the bumpless transfer property, some additional sufficient conditions are imposed on the control conditions. The novelties of this paper lie in that (i) a novel framework is presented for positive disturbance observer, (ii) double observers are constructed for linear switched positive systems, and (iii) a bumpless transfer controller is proposed in terms of linear programming. Finally, two examples are given to illustrate the effectiveness of the proposed results.

Suggested Citation

  • Yahao Yang & Zhong Huang & Pei Zhang, 2024. "Double-Observer-Based Bumpless Transfer Control of Switched Positive Systems," Mathematics, MDPI, vol. 12(11), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1724-:d:1406907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawen Wu & Qian Liu & Pan Yu, 2024. "Anti-Disturbance Bumpless Transfer Control for a Switched Systems via a Switched Equivalent-Input-Disturbance Approach," Mathematics, MDPI, vol. 12(15), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    2. Shiono, Naoshi & Suzuki, Hisatoshi & Saruwatari, Yasufumi, 2019. "A dynamic programming approach for the pipe network layout problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 52-61.
    3. Pecci, Filippo & Stoianov, Ivan & Ostfeld, Avi, 2021. "Relax-tighten-round algorithm for optimal placement and control of valves and chlorine boosters in water networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 690-698.
    4. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    5. Caldarola, Fabio & Maiolo, Mario, 2021. "A mathematical investigation on the invariance problem of some hydraulic indices," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    6. Anubhav Ratha & Pierre Pinson & Hélène Le Cadre & Ana Virag & Jalal Kazempour, 2022. "Moving from Linear to Conic Markets for Electricity," Working Papers hal-03799767, HAL.
    7. Sebastián Herrera-León & Freddy Lucay & Andrzej Kraslawski & Luis A. Cisternas & Edelmira D. Gálvez, 2018. "Optimization Approach to Designing Water Supply Systems in Non-Coastal Areas Suffering from Water Scarcity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2457-2473, May.
    8. Nerantzis, Dimitrios & Pecci, Filippo & Stoianov, Ivan, 2020. "Optimal control of water distribution networks without storage," European Journal of Operational Research, Elsevier, vol. 284(1), pages 345-354.
    9. Kakodkar, R. & He, G. & Demirhan, C.D. & Arbabzadeh, M. & Baratsas, S.G. & Avraamidou, S. & Mallapragada, D. & Miller, I. & Allen, R.C. & Gençer, E. & Pistikopoulos, E.N., 2022. "A review of analytical and optimization methodologies for transitions in multi-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Naoum-Sawaya, Joe & Ghaddar, Bissan & Arandia, Ernesto & Eck, Bradley, 2015. "Simulation-optimization approaches for water pump scheduling and pipe replacement problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 293-306.
    11. Özlem Karsu & Bahar Y. Kara & Elif Akkaya & Aysu Ozel, 2021. "Clean Water Network Design for Refugee Camps," Networks and Spatial Economics, Springer, vol. 21(1), pages 175-198, March.
    12. Selek, István & Ikonen, Enso, 2019. "Role of specific energy in decomposition of time-invariant least-cost reservoir filling problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 565-573.
    13. Yijiang Li & Santanu S. Dey & Nikolaos V. Sahinidis, 2024. "A reformulation-enumeration MINLP algorithm for gas network design," Journal of Global Optimization, Springer, vol. 90(4), pages 931-963, December.
    14. Denise Cariaga & Álvaro Lorca & Miguel F. Anjos, 2024. "A Binary Expansion Approach for the Water Pump Scheduling Problem in Large and High-Altitude Water Supply Systems," Energies, MDPI, vol. 17(16), pages 1-32, August.
    15. Morshedlou, Nazanin & González, Andrés D. & Barker, Kash, 2018. "Work crew routing problem for infrastructure network restoration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 66-89.
    16. Ruben Menke & Edo Abraham & Panos Parpas & Ivan Stoianov, 2016. "Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5333-5349, November.
    17. Kevin-Martin Aigner & Robert Burlacu & Frauke Liers & Alexander Martin, 2023. "Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 458-474, March.
    18. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.
    19. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).
    20. Dohnal, Mirko, 2016. "Complex biofuels related scenarios generated by qualitative reasoning under severe information shortages: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 676-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1724-:d:1406907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.