IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1705-d1405598.html
   My bibliography  Save this article

Ruin Probabilities with Investments in Random Environment: Smoothness

Author

Listed:
  • Viktor Antipov

    (Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119234, Russia
    “Vega” Institute, Moscow 119234, Russia)

  • Yuri Kabanov

    (Moscow School of Economics, Lomonosov Moscow State University, Moscow 119234, Russia
    Laboratoire de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France)

Abstract

This paper deals with the ruin problem of an insurance company investing its capital reserve in a risky asset with the price dynamics given by a conditional geometric Brownian motion whose parameters depend on a Markov process describing random variations in the economic and financial environments. We prove a sufficient condition on the distribution of jumps of the business process ensuring the smoothness of the ruin probability as a function of the initial capital and obtain for this function an integro-differential equation.

Suggested Citation

  • Viktor Antipov & Yuri Kabanov, 2024. "Ruin Probabilities with Investments in Random Environment: Smoothness," Mathematics, MDPI, vol. 12(11), pages 1-12, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1705-:d:1405598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuri Kabanov & Sergey Pergamenshchikov, 2022. "On ruin probabilities with investments in a risky asset with a regime-switching price," Finance and Stochastics, Springer, vol. 26(4), pages 877-897, October.
    2. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuri Kabanov & Platon Promyslov, 2023. "Ruin probabilities for a Sparre Andersen model with investments: the case of annuity payments," Finance and Stochastics, Springer, vol. 27(4), pages 887-902, October.
    2. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    3. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    4. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    5. Bae, Taehan & Kim, Changki & Kulperger, Reginald J., 2009. "Securitization of motor insurance loss rate risks," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 48-58, February.
    6. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    7. Eberlein, Ernst & Kabanov, Yuri & Schmidt, Thorsten, 2022. "Ruin probabilities for a Sparre Andersen model with investments," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 72-84.
    8. Constantinos Kardaras & Scott Robertson, 2017. "Continuous-time perpetuities and time reversal of diffusions," Finance and Stochastics, Springer, vol. 21(1), pages 65-110, January.
    9. Paulsen, Jostein, 1998. "Sharp conditions for certain ruin in a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 135-148, June.
    10. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    11. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    12. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    13. Behme, Anita, 2012. "Moments of MGOU processes and positive semidefinite matrix processes," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 183-197.
    14. Albrecher, Hansjörg & Thonhauser, Stefan, 2008. "Optimal dividend strategies for a risk process under force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 134-149, August.
    15. Alexey Bosov & Andrey Borisov, 2022. "Comparative Study of Markov Chain Filtering Schemas for Stabilization of Stochastic Systems under Incomplete Information," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    16. Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
    17. Hao, Xuemiao & Tang, Qihe, 2008. "A uniform asymptotic estimate for discounted aggregate claims with subexponential tails," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 116-120, August.
    18. Behme, Anita & Di Tella, Paolo & Sideris, Apostolos, 2024. "On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    19. Charupat, Narat & Milevsky, Moshe A., 2002. "Optimal asset allocation in life annuities: a note," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 199-209, April.
    20. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1705-:d:1405598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.