IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v44y2009i1p48-58.html
   My bibliography  Save this article

Securitization of motor insurance loss rate risks

Author

Listed:
  • Bae, Taehan
  • Kim, Changki
  • Kulperger, Reginald J.

Abstract

In an attempt to transfer the loss rate risks in motor insurance to the capital market, we use the tranche technique to hedge the motor insurance risks. This paper illustrates AXA and their securitization of French motor insurance in 2005 as an example. Though this application is new, this transaction is based on a concept similar to CDOs. Tranches of bonds are constructed on the basis of the expected loss ratio from motor insurance policy holders' groups. As a consequence we develop motor loss rate bonds using the structure of synthetic CDOs. The coupon payments of each tranche depend on the level of the loss rates of the underlying motor insurance pool. We show the integral formulas for the loss tranche contract where the loss distribution is modelled with discounted compound Poisson process. Esscher transform is chosen for a risk adjusted measure change and Fourier inversion method is used to calculate the price of the motor claim rate securities. The pricing methods of the tranches are illustrated, and possible suggestions to improve the pricing method and the design of these new securities follow.

Suggested Citation

  • Bae, Taehan & Kim, Changki & Kulperger, Reginald J., 2009. "Securitization of motor insurance loss rate risks," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 48-58, February.
  • Handle: RePEc:eee:insuma:v:44:y:2009:i:1:p:48-58
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00126-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Hans U., 1982. "On the numerical evaluation of the distribution of aggregate claims and its stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 13-18, January.
    2. Jang, Ji-Wook & Krvavych, Yuriy, 2004. "Arbitrage-free premium calculation for extreme losses using the shot noise process and the Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 97-111, August.
    3. Artis, Manuel & Ayuso, Mercedes & Guillen, Montserrat, 1999. "Modelling different types of automobile insurance fraud behaviour in the Spanish market," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 67-81, March.
    4. Yijia Lin & Samuel H. Cox, 2005. "Securitization of Mortality Risks in Life Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 227-252, June.
    5. Nilsen, Trygve & Paulsen, Jostein, 1996. "On the distribution of a randomly discounted compound Poisson process," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 305-310, February.
    6. Jozef De Mey, 2007. "Insurance and the Capital Markets*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 32(1), pages 35-41, January.
    7. Delbaen, F. & Haezendonck, J., 1987. "Classical risk theory in an economic environment," Insurance: Mathematics and Economics, Elsevier, vol. 6(2), pages 85-116, April.
    8. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    9. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    2. Constantinos Kardaras & Scott Robertson, 2017. "Continuous-time perpetuities and time reversal of diffusions," Finance and Stochastics, Springer, vol. 21(1), pages 65-110, January.
    3. Caroline Hillairet & Ying Jiao & Anthony Réveillac, 2017. "Pricing formulae for derivatives in insurance using the Malliavin calculus ," Working Papers hal-01561987, HAL.
    4. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    5. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    6. Hao, Xuemiao & Tang, Qihe, 2008. "A uniform asymptotic estimate for discounted aggregate claims with subexponential tails," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 116-120, August.
    7. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    8. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
    9. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    10. Anh Ninh, 2021. "Robust newsvendor problems with compound Poisson demands," Annals of Operations Research, Springer, vol. 302(1), pages 327-338, July.
    11. Kardaras, Constantinos & Robertson, Scott, 2017. "Continuous-time perpetuities and time reversal of diffusions," LSE Research Online Documents on Economics 67495, London School of Economics and Political Science, LSE Library.
    12. Zhang, Zhehao, 2019. "On the stochastic equation L(Z)=L[V(X+Z)] and properties of Mittag–Leffler distributions," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 365-376.
    13. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    14. Gjessing, Håkon K. & Paulsen, Jostein, 1997. "Present value distributions with applications to ruin theory and stochastic equations," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 123-144, October.
    15. Caroline Hillairet & Ying Jiao & Anthony Réveillac, 2018. "Pricing formulae for derivatives in insurance using the Malliavin calculus ," Post-Print hal-01561987, HAL.
    16. Wang, Guojing & Wu, Rong, 2001. "Distributions for the risk process with a stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 329-341, October.
    17. Caroline Hillairet & Ying Jiao & Anthony R'eveillac, 2017. "Pricing formulae for derivatives in insurance using the Malliavin calculus," Papers 1707.05061, arXiv.org.
    18. Caroline Hillairet & Ying Jiao, 2017. "Pricing formulae for derivatives in insurance using the Malliavin calculus," Working Papers 2017-75, Center for Research in Economics and Statistics.
    19. Yuri Kabanov & Platon Promyslov, 2023. "Ruin probabilities for a Sparre Andersen model with investments: the case of annuity payments," Finance and Stochastics, Springer, vol. 27(4), pages 887-902, October.
    20. Chen, An & Rach, Manuel, 2023. "Actuarial fairness and social welfare in mixed-cohort tontines," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 214-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:44:y:2009:i:1:p:48-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.