IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1702-d1405553.html
   My bibliography  Save this article

Solving the Vehicle Routing Problem with Time Windows Using Modified Rat Swarm Optimization Algorithm Based on Large Neighborhood Search

Author

Listed:
  • Xiaoxu Wei

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Zhouru Xiao

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Yongsheng Wang

    (School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)

Abstract

The vehicle routing problem with time windows (VRPTW) remains a formidable challenge, due to the intricate constraints of vehicle capacity and time windows. As a result, an algorithm tailored for this problem must demonstrate robust search capabilities and profound exploration abilities. Traditional methods often struggle to balance global search capabilities with computational efficiency, thus limiting their practical applicability. To address these limitations, this paper introduces a novel hybrid algorithm known as large neighborhood search with modified rat swarm optimization (LNS-MRSO). Modified rat swarm optimization (MRSO) is inspired by the foraging behavior of rat swarms and simulates the search process for optimization problems. Meanwhile, large neighborhood search (LNS) generates potential new solutions by removing and reinserting operators, incorporating a mechanism to embrace suboptimal solutions and strengthening the algorithm’s prowess in global optimization. Initial solutions are greedily generated, and five operators are devised to mimic the position updates of the rat swarm, providing rich population feedback to LNS and further enhancing algorithm performance. To validate the effectiveness of LNS-MRSO, experiments were conducted using the Solomon VRPTW benchmark test set. The results unequivocally demonstrate that LNS-MRSO achieves optimal solutions for all 39 test instances, particularly excelling on the R2 and RC2 datasets with percentage deviations improved by 5.1% and 8.8%, respectively, when compared to the best-known solutions (BKSs). Furthermore, when compared to state-of-the-art algorithms, LNS-MRSO exhibits remarkable advantages in addressing VRPTW problems with high loading capacities and lenient time windows. Additionally, applying LNS-MRSO to an unmanned concrete-mixing station further validates its practical utility and scalability.

Suggested Citation

  • Xiaoxu Wei & Zhouru Xiao & Yongsheng Wang, 2024. "Solving the Vehicle Routing Problem with Time Windows Using Modified Rat Swarm Optimization Algorithm Based on Large Neighborhood Search," Mathematics, MDPI, vol. 12(11), pages 1-33, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1702-:d:1405553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    2. Potvin, Jean-Yves & Rousseau, Jean-Marc, 1993. "A parallel route building algorithm for the vehicle routing and scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 66(3), pages 331-340, May.
    3. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    4. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    5. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    6. Z Fu & R Eglese & L Y O Li, 2008. "A unified tabu search algorithm for vehicle routing problems with soft time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 663-673, May.
    7. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    8. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    9. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    2. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    3. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    4. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    5. Schneider, M., 2016. "The vehicle-routing problem with time windows and driver-specific times," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65941, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    7. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    8. Sungwon Lee & Taesung Hwang, 2018. "Estimating Emissions from Regional Freight Delivery under Different Urban Development Scenarios," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    9. Allahyari, Somayeh & Yaghoubi, Saeed & Van Woensel, Tom, 2021. "A novel risk perspective on location-routing planning: An application in cash transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    10. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    11. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    12. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    13. Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
    14. Han, Shuihua & Zhao, Ling & Chen, Kui & Luo, Zong-wei & Mishra, Deepa, 2017. "Appointment scheduling and routing optimization of attended home delivery system with random customer behavior," European Journal of Operational Research, Elsevier, vol. 262(3), pages 966-980.
    15. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    16. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    17. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    18. Matteo Salani & Maria Battarra, 2018. "The opportunity cost of time window violations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 343-361, December.
    19. Christos D. Tarantilis & Afroditi K. Anagnostopoulou & Panagiotis P. Repoussis, 2013. "Adaptive Path Relinking for Vehicle Routing and Scheduling Problems with Product Returns," Transportation Science, INFORMS, vol. 47(3), pages 356-379, August.
    20. R A Russell & T L Urban, 2008. "Vehicle routing with soft time windows and Erlang travel times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1220-1228, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1702-:d:1405553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.