Author
Listed:
- Simon Göppel
(Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria)
- Jürgen Frikel
(Department of Computer Science and Mathematics, OTH Regensburg, 93053 Regensburg, Germany)
- Markus Haltmeier
(Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria)
Abstract
In a number of tomographic applications, data cannot be fully acquired, resulting in severely underdetermined image reconstruction. Conventional methods in such cases lead to reconstructions with significant artifacts. To overcome these artifacts, regularization methods are applied that incorporate additional information. An important example is TV reconstruction, which is known to be efficient in compensating for missing data and reducing reconstruction artifacts. On the other hand, tomographic data are also contaminated by noise, which poses an additional challenge. The use of a single regularizer must therefore account for both the missing data and the noise. A particular regularizer may not be ideal for both tasks. For example, the TV regularizer is a poor choice for noise reduction over multiple scales, in which case ℓ 1 curvelet regularization methods are well suited. To address this issue, in this paper, we present a novel variational regularization framework that combines the advantages of different regularizers. The basic idea of our framework is to perform reconstruction in two stages. The first stage is mainly aimed at accurate reconstruction in the presence of noise, and the second stage is aimed at artifact reduction. Both reconstruction stages are connected by a data proximity condition. The proposed method is implemented and tested for limited-view CT using a combined curvelet–TV approach. We define and implement a curvelet transform adapted to the limited-view problem and illustrate the advantages of our approach in numerical experiments.
Suggested Citation
Simon Göppel & Jürgen Frikel & Markus Haltmeier, 2024.
"Data-Proximal Complementary ℓ 1 -TV Reconstruction for Limited Data Computed Tomography,"
Mathematics, MDPI, vol. 12(10), pages 1-20, May.
Handle:
RePEc:gam:jmathe:v:12:y:2024:i:10:p:1606-:d:1398285
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1606-:d:1398285. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.