IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1502-d1392784.html
   My bibliography  Save this article

Multivariate Mittag-Leffler Solution for a Forced Fractional-Order Harmonic Oscillator

Author

Listed:
  • Jessica Mendiola-Fuentes

    (Departamento de Ciencias Básicas e Ingenierías, Universidad del Caribe, L-1. Mz 1, Esq. Fracc. Tabachines SM 78, Cancún 77528, Quintana Roo, Mexico
    These authors contributed equally to this work.)

  • Eugenio Guerrero-Ruiz

    (Department of Mathematics, Faculty of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Suite 1701, San Juan 00925-2537, Puerto Rico
    These authors contributed equally to this work.)

  • Juan Rosales-García

    (Departamento de Ingeniería Eléctrica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km, Comunidad Palo Blanco, Salamanca 36885, Guanajuato, Mexico)

Abstract

The harmonic oscillator is a fundamental physical–mathematical system that allows for the description of a variety of models in many fields of physics. Utilizing fractional derivatives instead of traditional derivatives enables the modeling of a more diverse array of behaviors. Furthermore, if the effect of the fractional derivative is applied to each of the terms of the differential equation, this will involve greater complexity in the description of the analytical solutions of the fractional differential equation. In this work, by using the Laplace method, the solutions to the multiple-term forced fractional harmonic oscillator are presented, described through multivariate Mittag-Leffler functions. Additionally, the cases of damped and undamped free fractional harmonic oscillators are addressed. Finally, through simulations, the effect of the fractional non-integer derivative is demonstrated, and the consistency of the result is verified when recovering the integer case.

Suggested Citation

  • Jessica Mendiola-Fuentes & Eugenio Guerrero-Ruiz & Juan Rosales-García, 2024. "Multivariate Mittag-Leffler Solution for a Forced Fractional-Order Harmonic Oscillator," Mathematics, MDPI, vol. 12(10), pages 1-11, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1502-:d:1392784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. K. Saxena & S. L. Kalla, 2005. "Solution of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2005, pages 1-16, January.
    2. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    3. Mark Naber, 2010. "Linear Fractionally Damped Oscillator," International Journal of Differential Equations, Hindawi, vol. 2010, pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    2. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    3. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    5. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    6. Praveendra Singh & Madhu Jain, 2024. "Inventory policy for degrading items under advanced payment with price and memory sensitive demand using metaheuristic techniques," Operational Research, Springer, vol. 24(3), pages 1-34, September.
    7. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    8. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    9. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    10. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    11. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    12. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    13. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    14. Slawomir Blasiak, 2021. "Heat Transfer Analysis for Non-Contacting Mechanical Face Seals Using the Variable-Order Derivative Approach," Energies, MDPI, vol. 14(17), pages 1-13, September.
    15. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    16. Goswami, Koushik, 2021. "Work fluctuations in a generalized Gaussian active bath," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    17. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    18. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    19. Murat A. Sultanov & Durdimurod K. Durdiev & Askar A. Rahmonov, 2021. "Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation," Mathematics, MDPI, vol. 9(17), pages 1-12, August.
    20. Kassim, Mohammed D. & Tatar, Nasser-eddine, 2021. "Nonlinear fractional distributed Halanay inequality and application to neural network systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1502-:d:1392784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.