IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v96y2023i5d10.1140_epjb_s10051-023-00518-x.html
   My bibliography  Save this article

A generalized nonlinear cubic-quartic Schrodinger equation and its implications in quantum wire

Author

Listed:
  • Rami Ahmad El-Nabulsi

    (Chiang Mai University
    Chiang Mai University)

  • Waranont Anukool

    (Chiang Mai University
    Chiang Mai University
    Chiang Mai University)

Abstract

In this communication, we have constructed a generalized nonlinear Schrödinger equation based on nonlocal quantum momentum square operator. Single and bright singular combo solitons solutions have been obtained from quantum arguments. This study proves that solitons may be used to study nonlinear effects in nonlocal nonlinear media including nonlinear optics. Besides, it was observed that, near metal surface a quantum wire is governed, for particular kernels, by single electron symmetric soliton or a bright singular combo soliton depending on the nature of the potential energy originating from interaction of the electron with image charges in a quantum wire. These features are comparable to those soliton solutions arising in quantum optics and Bose–Einstein condensation. Graphical abstract Propagation of a single quasi-symmetric soliton based on nonlocal square momentum operator approach

Suggested Citation

  • Rami Ahmad El-Nabulsi & Waranont Anukool, 2023. "A generalized nonlinear cubic-quartic Schrodinger equation and its implications in quantum wire," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(5), pages 1-8, May.
  • Handle: RePEc:spr:eurphb:v:96:y:2023:i:5:d:10.1140_epjb_s10051-023-00518-x
    DOI: 10.1140/epjb/s10051-023-00518-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-023-00518-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-023-00518-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Naito & H. Yamamoto & K. Okuda & K. Konishi & H. Mayama & D. Yamaguchi & S. Koizumi & K. Kubo & T. Nakamura, 2013. "Magnetic ordering of spin systems having fractal dimensions Experimental study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    2. Wladyslaw Adam Majewski, 2017. "On Quantum Statistical Mechanics: A Study Guide," Advances in Mathematical Physics, Hindawi, vol. 2017, pages 1-9, November.
    3. Kudryashov, Nikolay A., 2020. "Highly dispersive optical solitons of equation with various polynomial nonlinearity law," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Vikas & Biswas, Anjan & Ekici, Mehmet & Moraru, Luminita & Alzahrani, Abdullah Khamis & Belic, Milivoj R., 2021. "Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Sucu, Nuray & Ekici, Mehmet & Biswas, Anjan, 2021. "Stationary optical solitons with nonlinear chromatic dispersion and generalized temporal evolution by extended trial function approach," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2023. "A family of nonlinear Schrodinger equations and their solitons solutions," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Islam Samir & Ahmed H. Arnous & Yakup Yıldırım & Anjan Biswas & Luminita Moraru & Simona Moldovanu, 2022. "Optical Solitons with Cubic-Quintic-Septic-Nonic Nonlinearities and Quadrupled Power-Law Nonlinearity: An Observation," Mathematics, MDPI, vol. 10(21), pages 1-9, November.
    5. Oswaldo González-Gaxiola & Anjan Biswas & Yakup Yıldırım & Luminita Moraru, 2022. "Highly Dispersive Optical Solitons in Birefringent Fibers with Polynomial Law of Nonlinear Refractive Index by Laplace–Adomian Decomposition," Mathematics, MDPI, vol. 10(9), pages 1-12, May.
    6. Anjan Biswas & Jose Vega-Guzman & Yakup Yıldırım & Luminita Moraru & Catalina Iticescu & Abdulah A. Alghamdi, 2023. "Optical Solitons for the Concatenation Model with Differential Group Delay: Undetermined Coefficients," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    7. Nikolay A. Kudryashov, 2022. "Optical Solitons of the Generalized Nonlinear Schrödinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order," Mathematics, MDPI, vol. 10(18), pages 1-9, September.
    8. Ekici, Mehmet & Sonmezoglu, Abdullah & Biswas, Anjan, 2021. "Stationary optical solitons with Kudryashov’s laws of refractive index," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Muslum Ozisik & Aydin Secer & Mustafa Bayram & Anjan Biswas & Oswaldo González-Gaxiola & Luminita Moraru & Simona Moldovanu & Catalina Iticescu & Dorin Bibicu & Abdulah A. Alghamdi, 2023. "Retrieval of Optical Solitons with Anti-Cubic Nonlinearity," Mathematics, MDPI, vol. 11(5), pages 1-18, March.
    10. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Elsayed M. E. Zayed & Khaled A. Gepreel & Mahmoud El-Horbaty & Anjan Biswas & Yakup Yıldırım & Hashim M. Alshehri, 2021. "Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms," Mathematics, MDPI, vol. 9(24), pages 1-19, December.
    12. Kudryashov, Nikolay A. & Nifontov, Daniil R., 2023. "Conservation laws and Hamiltonians of the mathematical model with unrestricted dispersion and polynomial nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:96:y:2023:i:5:d:10.1140_epjb_s10051-023-00518-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.