IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i1p1-9.html
   My bibliography  Save this article

Series solutions of non-linear Riccati differential equations with fractional order

Author

Listed:
  • Cang, Jie
  • Tan, Yue
  • Xu, Hang
  • Liao, Shi-Jun

Abstract

In this paper, based on the homotopy analysis method (HAM), a new analytic technique is proposed to solve non-linear Riccati differential equation with fractional order. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter ℏ. Besides, it is proved that well-known Adomian’s decomposition method is a special case of the homotopy analysis method when ℏ=−1. This work illustrates the validity and great potential of the homotopy analysis method for the non-linear differential equations with fractional order. The basic ideas of this approach can be widely employed to solve other strongly non-linear problems in fractional calculus.

Suggested Citation

  • Cang, Jie & Tan, Yue & Xu, Hang & Liao, Shi-Jun, 2009. "Series solutions of non-linear Riccati differential equations with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 1-9.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:1-9
    DOI: 10.1016/j.chaos.2007.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907003311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Hang, 2023. "A generalized analytical approach for highly accurate solutions of fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Navickas, Z. & Telksnys, T. & Marcinkevicius, R. & Ragulskis, M., 2017. "Operator-based approach for the construction of analytical soliton solutions to nonlinear fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 625-634.
    3. Bota, Constantin & Căruntu, Bogdan, 2017. "Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 339-345.
    4. Fathy, Mohamed & Abdelgaber, K.M., 2022. "Approximate solutions for the fractional order quadratic Riccati and Bagley-Torvik differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Hallaji, Majid & Dideban, Abbas & Khanesar, Mojtaba Ahmadieh & kamyad, Ali vahidyan, 2018. "Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 325-340.
    6. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Analysis of Generalized Nonlinear Quadrature for Novel Fractional-Order Chaotic Systems Using Sinc Shape Function," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    7. S. Balaji, 2014. "Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-10, June.
    8. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    9. Jim Gatheral & Radoš Radoičić, 2019. "Rational Approximation Of The Rough Heston Solution," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayat, T. & Abbas, Z. & Sajid, M., 2009. "MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 840-848.
    2. Maxim Ulrich & Lukas Zimmer & Constantin Merbecks, 2023. "Implied volatility surfaces: a comprehensive analysis using half a billion option prices," Review of Derivatives Research, Springer, vol. 26(2), pages 135-169, October.
    3. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    4. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    5. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    6. Takayuki Sakuma & Yuji Yamada, 2014. "Application of Homotopy Analysis Method to Option Pricing Under Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(1), pages 1-14, March.
    7. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    8. Alghalith, Moawia, 2018. "Pricing the American options using the Black–Scholes pricing formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 443-445.
    9. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    10. Wenting Chen & Song-Ping Zhu, 2022. "On the Asymptotic Behavior of the Optimal Exercise Price Near Expiry of an American Put Option under Stochastic Volatility," JRFM, MDPI, vol. 15(5), pages 1-19, April.
    11. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    12. Alghalith, Moawia, 2020. "Pricing the American options: A closed-form, simple formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    13. Song-Ping Zhu & Nhat-Tan Le & Wen-Ting Chen & Xiaoping Lu, 2015. "Pricing Parisian down-and-in options," Papers 1511.01564, arXiv.org.
    14. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    15. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    16. Song-Ping Zhu & Xin-Jiang He & XiaoPing Lu, 2018. "A new integral equation formulation for American put options," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 483-490, March.
    17. Riccardo Fazio, 2015. "A Posteriori Error Estimator for a Front-Fixing Finite Difference Scheme for American Options," Papers 1504.04594, arXiv.org.
    18. Chinonso Nwankwo & Weizhong Dai, 2020. "An Adaptive and Explicit Fourth Order Runge-Kutta-Fehlberg Method Coupled with Compact Finite Differencing for Pricing American Put Options," Papers 2007.04408, arXiv.org, revised Jul 2021.
    19. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    20. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.