IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1779-d1118766.html
   My bibliography  Save this article

Multi-Drug Scheduling for Chemotherapy Using Fractional Order Internal Model Controller

Author

Listed:
  • Nikhil Pachauri

    (Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India)

  • Velamuri Suresh

    (Symbiosis Institute of Technology, Symbiosis International University (Deemed University), Pune 412115, India)

  • MVV Prasad Kantipudi

    (Symbiosis Institute of Technology, Symbiosis International University (Deemed University), Pune 412115, India)

  • Reem Alkanhel

    (Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Hanaa A. Abdallah

    (Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

Abstract

Chemotherapy is a widely used cancer treatment method globally. However, cancer cells can develop resistance towards single-drug-based chemotherapy if it is infused for extended periods, resulting in treatment failure in many cases. To address this issue, oncologists have progressed towards using multi-drug chemotherapy (MDC). This method considers different drug concentrations for cancer treatment, but choosing incorrect drug concentrations can adversely affect the patient’s body. Therefore, it is crucial to recognize the trade-off between drug concentrations and their adverse effects. To address this issue, a closed-loop multi-drug scheduling based on Fractional Order Internal-Model-Control Proportional Integral (IMC-FOPI) Control is proposed. The proposed scheme combines the benefits of fractional PI and internal model controllers. Additionally, the parameters of IMC-FOPI are optimally tuned using a random walk-based Moth-flame optimization. The performance of the proposed controller is compared with PI and Two degrees of freedom PI (2PI) controllers for drug concentration control at the tumor site. The results reveal that the proposed control scheme improves the settling time by 43% and 21% for V X , 54% and 48 % for V Y , and 48% and 40% for V Z , respectively, compared to PI and 2PI. Therefore, it can be concluded that the proposed control scheme is more efficient in scheduling multi-drug than conventional controllers.

Suggested Citation

  • Nikhil Pachauri & Velamuri Suresh & MVV Prasad Kantipudi & Reem Alkanhel & Hanaa A. Abdallah, 2023. "Multi-Drug Scheduling for Chemotherapy Using Fractional Order Internal Model Controller," Mathematics, MDPI, vol. 11(8), pages 1-19, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1779-:d:1118766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iskakova, Kulpash & Alam, Mohammad Mahtab & Ahmad, Shabir & Saifullah, Sayed & Akgül, Ali & Yılmaz, Gülnur, 2023. "Dynamical study of a novel 4D hyperchaotic system: An integer and fractional order analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 219-245.
    2. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    3. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Mahmoud, Emad E. & Trikha, Pushali & Jahanzaib, Lone Seth & Almaghrabi, Omar A., 2020. "Dynamical analysis and chaos control of the fractional chaotic ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    8. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    12. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    13. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Alina Alb Lupaş, 2021. "Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations," Mathematics, MDPI, vol. 9(20), pages 1-10, October.
    17. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    19. Danane, Jaouad & Allali, Karam & Hammouch, Zakia, 2020. "Mathematical analysis of a fractional differential model of HBV infection with antibody immune response," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    20. Omame, A. & Abbas, M. & Onyenegecha, C.P., 2021. "A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1779-:d:1118766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.