A Machine Learning Approach for Improving Wafer Acceptance Testing Based on an Analysis of Station and Equipment Combinations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yong Jin Suh & Jin Young Choi, 2022. "Efficient Fab facility layout with spine structure using genetic algorithm under various material-handling considerations," International Journal of Production Research, Taylor & Francis Journals, vol. 60(9), pages 2816-2829, May.
- Eduardo e Oliveira & Vera L. Miguéis & José L. Borges, 2022. "On the influence of overlap in automatic root cause analysis in manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 60(21), pages 6491-6507, November.
- Hyun Joong Yoon & Junjae Chae, 2019. "Simulation Study for Semiconductor Manufacturing System: Dispatching Policies for a Wafer Test Facility," Sustainability, MDPI, vol. 11(4), pages 1-21, February.
- Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jeongsub Choi & Mengmeng Zhu & Jihoon Kang & Myong K. Jeong, 2024. "Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing," Annals of Operations Research, Springer, vol. 339(1), pages 185-201, August.
- Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
- Beixin Xia & Tong Tian & Yan Gao & Mingyue Zhang & Yunfang Peng, 2022. "A Dynamic Dispatching Method for Large-Scale Interbay Material Handling Systems of Semiconductor FAB," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
- Peng Zhan & Shaokun Wang & Jun Wang & Leigang Qu & Kun Wang & Yupeng Hu & Xueqing Li, 2021. "Temporal anomaly detection on IIoT-enabled manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1669-1678, August.
- Hasan Tercan & Philipp Deibert & Tobias Meisen, 2022. "Continual learning of neural networks for quality prediction in production using memory aware synapses and weight transfer," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 283-292, January.
- Tobias Schlosser & Michael Friedrich & Frederik Beuth & Danny Kowerko, 2022. "Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1099-1123, April.
- Jinwoo Song & Prashant Kumar & Yonghawn Kim & Heung Soo Kim, 2024. "A Fault Detection System for Wiring Harness Manufacturing Using Artificial Intelligence," Mathematics, MDPI, vol. 12(4), pages 1-17, February.
More about this item
Keywords
DRAM manufacturing; statistical quality control; clustering; associative analysis; case study;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1569-:d:1105378. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.