IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v47y2018i3p521-531.html
   My bibliography  Save this article

Estimation of the integrated volatility using noisy high-frequency data with jumps and endogeneity

Author

Listed:
  • Cuixia Li
  • Erlin Guo

Abstract

In this paper, we investigate a new estimator of the integrated volatility of Itô semimartingales in the presence of both market microstructure noise and jumps when sampling times are endogenous. In the first step, our estimation wipes off the effects of the microstructure noise, and in the second step our estimator shrinks the effects of jumps. We provide consistency of the estimator when the jumps have finite variation and infinite variation and establish a central limit theorem for the estimator in a general endogenous time setting when the jumps only have finite variation. Simulation illustrates the performance of the proposed estimator.

Suggested Citation

  • Cuixia Li & Erlin Guo, 2018. "Estimation of the integrated volatility using noisy high-frequency data with jumps and endogeneity," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(3), pages 521-531, February.
  • Handle: RePEc:taf:lstaxx:v:47:y:2018:i:3:p:521-531
    DOI: 10.1080/03610926.2017.1307403
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2017.1307403
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2017.1307403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erlin Guo & Cuixia Li & Fengqin Tang, 2023. "The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization," Mathematics, MDPI, vol. 11(6), pages 1-11, March.
    2. Dohyun Chun & Donggyu Kim, 2022. "State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:47:y:2018:i:3:p:521-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.