Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Eslami, Ahmadreza & Negnevitsky, Michael & Franklin, Evan & Lyden, Sarah, 2022. "Review of AI applications in harmonic analysis in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Matej Žnidarec & Zvonimir Klaić & Damir Šljivac & Boris Dumnić, 2019. "Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network," Energies, MDPI, vol. 12(5), pages 1-19, February.
- José Manuel Gámez Medina & Jorge de la Torre y Ramos & Francisco Eneldo López Monteagudo & Leticia del Carmen Ríos Rodríguez & Diego Esparza & Jesús Manuel Rivas & Leonel Ruvalcaba Arredondo & Alejand, 2022. "Power Factor Prediction in Three Phase Electrical Power Systems Using Machine Learning," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
- Vaclav Kus & Bohumil Skala & Pavel Drabek, 2021. "Complex Design Method of Filtration Station Considering Harmonic Components," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
- De Giorgi, M.G. & Malvoni, M. & Congedo, P.M., 2016. "Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine," Energy, Elsevier, vol. 107(C), pages 360-373.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Manuela Panoiu & Caius Panoiu & Petru Ivascanu, 2024. "Power Factor Modelling and Prediction at the Hot Rolling Mills’ Power Supply Using Machine Learning Algorithms," Mathematics, MDPI, vol. 12(6), pages 1-26, March.
- Anca-Elena Iordan, 2024. "An Optimized LSTM Neural Network for Accurate Estimation of Software Development Effort," Mathematics, MDPI, vol. 12(2), pages 1-22, January.
- Rafael S. Salles & Sarah K. Rönnberg, 2023. "Review of Waveform Distortion Interactions Assessment in Railway Power Systems," Energies, MDPI, vol. 16(14), pages 1-33, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
- Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
- Shuyu Dai & Dongxiao Niu & Yaru Han, 2018. "Forecasting of Energy-Related CO 2 Emissions in China Based on GM(1,1) and Least Squares Support Vector Machine Optimized by Modified Shuffled Frog Leaping Algorithm for Sustainability," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
- Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
- Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
- Manoj Verma & Harish Kumar Ghritlahre, 2023. "Forecasting of Wind Speed by Using Three Different Techniques of Prediction Models," Annals of Data Science, Springer, vol. 10(3), pages 679-711, June.
- Moreno, Sinvaldo Rodrigues & dos Santos Coelho, Leandro, 2018. "Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System," Renewable Energy, Elsevier, vol. 126(C), pages 736-754.
- Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
- Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
- Hammed Olabisi Omotoso & Abdullrahman A. Al-Shamma’a & Mohammed Alharbi & Hassan M. Hussein Farh & Abdulaziz Alkuhayli & Akram M. Abdurraqeeb & Faisal Alsaif & Umar Bawah & Khaled E. Addoweesh, 2023. "Machine Learning Supervisory Control of Grid-Forming Inverters in Islanded Mode," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
- Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
- Farid Saberi-Movahed & Mohammad Najafzadeh & Adel Mehrpooya, 2020. "Receiving More Accurate Predictions for Longitudinal Dispersion Coefficients in Water Pipelines: Training Group Method of Data Handling Using Extreme Learning Machine Conceptions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 529-561, January.
- Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
- Mahmoodi, Kumars & Nepomuceno, Erivelton & Razminia, Abolhassan, 2022. "Wave excitation force forecasting using neural networks," Energy, Elsevier, vol. 247(C).
- Ladislav Zjavka, 2021. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Dongxiao Niu & Shuyu Dai, 2017. "A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Gre," Energies, MDPI, vol. 10(3), pages 1-20, March.
- Muhammad Naveed Akhter & Saad Mekhilef & Hazlie Mokhlis & Ziyad M. Almohaimeed & Munir Azam Muhammad & Anis Salwa Mohd Khairuddin & Rizwan Akram & Muhammad Majid Hussain, 2022. "An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants," Energies, MDPI, vol. 15(6), pages 1-21, March.
- Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
- Xiaomei Wu & Chun Sing Lai & Chenchen Bai & Loi Lei Lai & Qi Zhang & Bo Liu, 2020. "Optimal Kernel ELM and Variational Mode Decomposition for Probabilistic PV Power Prediction," Energies, MDPI, vol. 13(14), pages 1-21, July.
More about this item
Keywords
harmonic analysis; total harmonic distortion; computational techniques; prediction; machine learning; electrified railway; GMDH;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1381-:d:1095188. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.