IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1330-d1092460.html
   My bibliography  Save this article

Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting

Author

Listed:
  • Xueliang Zhao

    (Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041, China
    Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
    School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Qilong Sun

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
    Binzhou Institute of Technology, Binzhou 256606, China)

  • Xiaoguang Lin

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China)

Abstract

Spatial-temporal sequence prediction is one of the hottest topics in the field of deep learning due to its wide range of potential applications in video-like data processing, specifically weather forecasting. Since most spatial-temporal observations evolve under physical laws, we adopt an attentional gating scheme to leverage the dynamic patterns captured by tailored convolution structures and propose a novel neural network, PastNet, to achieve accurate predictions. By highlighting useful parts of the whole feature map, the gating units help increase the efficiency of the architecture. Extensive experiments conducted on synthetic and real-world datasets reveal that PastNet bears the ability to accomplish this task with better performance than baseline methods.

Suggested Citation

  • Xueliang Zhao & Qilong Sun & Xiaoguang Lin, 2023. "Physical Attention-Gated Spatial-Temporal Predictive Network for Weather Forecasting," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1330-:d:1092460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suman Ravuri & Karel Lenc & Matthew Willson & Dmitry Kangin & Remi Lam & Piotr Mirowski & Megan Fitzsimons & Maria Athanassiadou & Sheleem Kashem & Sam Madge & Rachel Prudden & Amol Mandhane & Aidan C, 2021. "Skilful precipitation nowcasting using deep generative models of radar," Nature, Nature, vol. 597(7878), pages 672-677, September.
    2. Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    3. Anand, Vaibhav, 2022. "The Value of Forecast Improvements: Evidence from Advisory Lead Times and Vehicle Crashes," MPRA Paper 114491, University Library of Munich, Germany.
    4. Husain Najafi & Pallav Kumar Shrestha & Oldrich Rakovec & Heiko Apel & Sergiy Vorogushyn & Rohini Kumar & Stephan Thober & Bruno Merz & Luis Samaniego, 2024. "High-resolution impact-based early warning system for riverine flooding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    6. Tang, Wenliang & Yang, Mian & Duan, Hongbo, 2023. "Temperature and corporate tax avoidance: Evidence from Chinese manufacturing firms," Energy Economics, Elsevier, vol. 117(C).
    7. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    8. Xiao-Yang Liu & Jingyang Rui & Jiechao Gao & Liuqing Yang & Hongyang Yang & Zhaoran Wang & Christina Dan Wang & Jian Guo, 2021. "FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance," Papers 2112.06753, arXiv.org, revised Mar 2022.
    9. Zack Guido & Sara Lopus & Kurt Waldman & Corrie Hannah & Andrew Zimmer & Natasha Krell & Chris Knudson & Lyndon Estes & Kelly Caylor & Tom Evans, 2021. "Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making," Climatic Change, Springer, vol. 168(1), pages 1-20, September.
    10. Sergei Soldatenko & Rafael Yusupov, 2021. "An Optimal Control Perspective on Weather and Climate Modification," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    11. Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).
    12. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    13. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    14. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    15. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    16. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks," Mathematics, MDPI, vol. 12(3), pages 1-17, February.
    17. M. K. Islam & N. M. S. Hassan & M. G. Rasul & Kianoush Emami & Ashfaque Ahmed Chowdhury, 2023. "Forecasting of Solar and Wind Resources for Power Generation," Energies, MDPI, vol. 16(17), pages 1-23, August.
    18. Cailin Li & Na Sun & Yihui Lu & Baoyun Guo & Yue Wang & Xiaokai Sun & Yukai Yao, 2022. "Review on Urban Flood Risk Assessment," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    19. Eva D. Regnier & Joel W. Feldmeier, 2022. "D Minus Months: Strategic Planning for Weather-Sensitive Decisions," Decision Analysis, INFORMS, vol. 19(1), pages 1-20, March.
    20. Muschinski, Thomas & Mayr, Georg J. & Simon, Thorsten & Umlauf, Nikolaus & Zeileis, Achim, 2024. "Cholesky-based multivariate Gaussian regression," Econometrics and Statistics, Elsevier, vol. 29(C), pages 261-281.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1330-:d:1092460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.