IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1327-d1092322.html
   My bibliography  Save this article

On Filtering and Smoothing Algorithms for Linear State-Space Models Having Quantized Output Data

Author

Listed:
  • Angel L. Cedeño

    (Electronics Engineering Department, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile
    Advanced Center for Electrical and Electronic Engineering, AC3E, Gral. Bari 699, Valparaíso 2390136, Chile)

  • Rodrigo A. González

    (Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands)

  • Boris I. Godoy

    (Department of Automatic Control, Lund University, 221 00 Lund, Sweden)

  • Rodrigo Carvajal

    (School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso 2374631, Chile)

  • Juan C. Agüero

    (Electronics Engineering Department, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile
    Advanced Center for Electrical and Electronic Engineering, AC3E, Gral. Bari 699, Valparaíso 2390136, Chile)

Abstract

The problem of state estimation of a linear, dynamical state-space system where the output is subject to quantization is challenging and important in different areas of research, such as control systems, communications, and power systems. There are a number of methods and algorithms to deal with this state estimation problem. However, there is no consensus in the control and estimation community on (1) which methods are more suitable for a particular application and why, and (2) how these methods compare in terms of accuracy, computational cost, and user friendliness. In this paper, we provide a comprehensive overview of the state-of-the-art algorithms to deal with state estimation subject to quantized measurements, and an exhaustive comparison among them. The comparison analysis is performed in terms of the accuracy of the state estimation, dimensionality issues, hyperparameter selection, user friendliness, and computational cost. We consider classical approaches and a new development in the literature to obtain the filtering and smoothing distributions of the state conditioned to quantized data. The classical approaches include the extended Kalman filter/smoother, the quantized Kalman filter/smoother, the unscented Kalman filter/smoother, and the sequential Monte Carlo sampling method, also called particle filter/smoother, with its most relevant variants. We also consider a new approach based on the Gaussian sum filter/smoother. Extensive numerical simulations—including a practical application—are presented in order to analyze the accuracy of the state estimation and the computational cost.

Suggested Citation

  • Angel L. Cedeño & Rodrigo A. González & Boris I. Godoy & Rodrigo Carvajal & Juan C. Agüero, 2023. "On Filtering and Smoothing Algorithms for Linear State-Space Models Having Quantized Output Data," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1327-:d:1092322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1327/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    2. Genshiro Kitagawa, 1994. "The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 605-623, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    2. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    3. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    4. Carlos Carvalho & Stefano Eusepi & Emanuel Moench & Bruce Preston, 2023. "Anchored Inflation Expectations," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(1), pages 1-47, January.
    5. Tatsuma Wada & Pierre Perron, 2006. "State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2006-029, Boston University - Department of Economics.
    6. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    7. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137, National Bureau of Economic Research, Inc.
    8. Bernardi Mauro & Della Corte Giuseppe & Proietti Tommaso, 2011. "Extracting the Cyclical Component in Hours Worked," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-28, May.
    9. Doh, Taeyoung, 2011. "Yield curve in an estimated nonlinear macro model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1229-1244, August.
    10. Andrea Beccarini, 2016. "Bias correction through filtering omitted variables and instruments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 754-766, March.
    11. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    12. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    13. Creal, Drew D. & Wu, Jing Cynthia, 2015. "Estimation of affine term structure models with spanned or unspanned stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 60-81.
    14. Matteo Cacciatore & Federico Ravenna, 2021. "Uncertainty, Wages and the Business Cycle," The Economic Journal, Royal Economic Society, vol. 131(639), pages 2797-2823.
    15. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    16. Linlin Niu, 2013. "An Affine Term Structure Model with Auxiliary Stochastic Volatility-Covolatility," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    17. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    18. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    19. Norris I. Bruce, 2008. "Pooling and Dynamic Forgetting Effects in Multitheme Advertising: Tracking the Advertising Sales Relationship with Particle Filters," Marketing Science, INFORMS, vol. 27(4), pages 659-673, 07-08.
    20. Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1327-:d:1092322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.