IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i4p754-766.html
   My bibliography  Save this article

Bias correction through filtering omitted variables and instruments

Author

Listed:
  • Andrea Beccarini

Abstract

This paper proposes a combination of the particle-filter-based method and the expectation-maximization algorithm (PFEM), in order to filter unobservable variables and hence, to reduce the omitted variables bias. Furthermore, I consider as an unobservable variable, an exogenous one that can be used as an instrument in the instrumental variable (IV) methodology. The aim is to show that the PFEM is able to eliminate or reduce both the omitted variable bias and the simultaneous equation bias by filtering the omitted variable and the unobserved instrument, respectively. In other words, the procedure provides (at least approximately) consistent estimates, without using additional information embedded in the omitted variable or in the instruments, since they are filtered by the observable variables. The validity of the procedure is shown both through simulations and through a comparison to an IV analysis which appeared in an important previous publication. As regards the latter point, I demonstrate that the procedure developed in this article yields similar results to those of the original IV analysis.

Suggested Citation

  • Andrea Beccarini, 2016. "Bias correction through filtering omitted variables and instruments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 754-766, March.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:4:p:754-766
    DOI: 10.1080/02664763.2015.1077376
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1077376
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1077376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruud, Paul A., 1991. "Extensions of estimation methods using the EM algorithm," Journal of Econometrics, Elsevier, vol. 49(3), pages 305-341, September.
    2. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    3. Christina D. Romer & David H. Romer, 1989. "Does Monetary Policy Matter? A New Test in the Spirit of Friedman and Schwartz," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 121-184, National Bureau of Economic Research, Inc.
    4. Campbell, John Y & Mankiw, N Gregory, 1990. "Permanent Income, Current Income, and Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 265-279, July.
    5. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    6. Sessions, David N. & Stevans, Lonnie K., 2006. "Investigating omitted variable bias in regression parameter estimation: A genetic algorithm approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2835-2854, June.
    7. McCallum, B T, 1972. "Relative Asymptotic Bias from Errors of Omission and Measurement," Econometrica, Econometric Society, vol. 40(4), pages 757-758, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Beccarini, 2010. "Eliminating the omitted variable bias by a regime-switching approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 57-75.
    2. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    3. Jeffrey C. Fuhrer, 1998. "An optimizing model for monetary policy analysis: can habit formation help?," Working Papers 98-1, Federal Reserve Bank of Boston.
    4. Creal, Drew D. & Wu, Jing Cynthia, 2015. "Estimation of affine term structure models with spanned or unspanned stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 60-81.
    5. Manthos D. Delis & Pantelis Kazakis & Constantin Zopounidis, 2021. "Management Practices and Takeover Decisions," Working Papers 2021_10, Business School - Economics, University of Glasgow.
    6. Cheng, Jing & Chan, Ngai Hang, 2019. "Efficient inference for nonlinear state space models: An automatic sample size selection rule," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 143-154.
    7. Tsionas, Mike G., 2020. "On a model of environmental performance and technology gaps," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1141-1152.
    8. Elliot Aurissergues, 2017. "Monetary Policy Puzzle and wealth targeting consumers," Working Papers halshs-01625347, HAL.
    9. Mike G. Tsionas & Nicholas Apergis, 2023. "Another look at contagion across United States and European financial markets: Evidence from the credit default swaps markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1137-1155, January.
    10. Emmanuel C. Mamatzakis & Steven Ongena & Mike G. Tsionas, 2023. "The response of household debt to COVID-19 using a neural networks VAR in OECD," Empirical Economics, Springer, vol. 65(1), pages 65-91, July.
    11. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    12. Tsionas, Mike G., 2022. "Convex non-parametric least squares, causal structures and productivity," European Journal of Operational Research, Elsevier, vol. 303(1), pages 370-387.
    13. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    14. Delis, Manthos D. & Kazakis, Pantelis & Zopounidis, Constantin, 2023. "Management and takeover decisions," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1256-1268.
    15. Anh Nguyen & Efthymios Pavlidis & David Alan Peel, 2016. "Modeling changes in U.S. monetary policy," Working Papers 127876159, Lancaster University Management School, Economics Department.
    16. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    17. Nguyen Anh D. M. & Pavlidis Efthymios G. & Peel David A., 2018. "Modeling changes in US monetary policy with a time-varying nonlinear Taylor rule," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-17, December.
    18. Kui-Wai Li, 2013. "The US monetary performance prior to the 2008 crisis," Applied Economics, Taylor & Francis Journals, vol. 45(24), pages 3450-3461, August.
    19. David Andolfatto & Paul Gomme, 2003. "Monetary Policy Regimes and Beliefs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(1), pages 1-30, February.
    20. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:4:p:754-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.