IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1318-d1092062.html
   My bibliography  Save this article

An Analysis of PISA 2018 Mathematics Assessment for Asia-Pacific Countries Using Educational Data Mining

Author

Listed:
  • Ezgi Gülenç Bayirli

    (Institute of Science and Technology, Yildiz Technical University, Istanbul 34220, Turkey)

  • Atabey Kaygun

    (Department of Mathematics, İstanbul Technical University, Istanbul 34469, Turkey)

  • Ersoy Öz

    (Department of Statistics, Yildiz Technical University, Istanbul 34220, Turkey)

Abstract

The purpose of this paper is to determine the variables of high importance affecting the mathematics achievement of the students of 12 Asia-Pacific countries participating in the Program for International Student Assessment (PISA) 2018. For this purpose, we used random forest (RF), logistic regression (LR) and support vector machine (SVM) models to classify student achievement in mathematics. The variables affecting the student achievement in mathematics were examined by the feature importance method. We observed that the variables with the highest importance for all of the 12 Asia-Pacific countries we considered are the educational status of the parents, having access to educational resources, age, the time allocated to weekly lessons, and the age of starting kindergarten. Then we applied two different clustering analysis by using the variable importance values and socio-economic variables of these countries. We observed that Korea, Japan and Taipei form one group of Asia-Pacific countries, while Thailand, China, Indonesia, and Malaysia form another meaningful group in both clustering analyses. The results we obtained strongly suggest that there is a quantifiable relationship between the educational attainment and socio-economic levels of these 12 Asia-Pacific countries.

Suggested Citation

  • Ezgi Gülenç Bayirli & Atabey Kaygun & Ersoy Öz, 2023. "An Analysis of PISA 2018 Mathematics Assessment for Asia-Pacific Countries Using Educational Data Mining," Mathematics, MDPI, vol. 11(6), pages 1-23, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1318-:d:1092062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huebener, Mathias & Kuger, Susanne & Marcus, Jan, 2017. "Increased instruction hours and the widening gap in student performance," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47, pages 15-34.
    2. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    3. Blau, David & Currie, Janet, 2006. "Pre-School, Day Care, and After-School Care: Who's Minding the Kids?," Handbook of the Economics of Education, in: Erik Hanushek & F. Welch (ed.), Handbook of the Economics of Education, edition 1, volume 2, chapter 20, pages 1163-1278, Elsevier.
    4. İsmail Güzel & Atabey Kaygun, 2022. "A new non-archimedean metric on persistent homology," Computational Statistics, Springer, vol. 37(4), pages 1963-1983, September.
    5. Acemoglu, Daron & Pischke, J. -S., 2001. "Changes in the wage structure, family income, and children's education," European Economic Review, Elsevier, vol. 45(4-6), pages 890-904, May.
    6. Kristof De Witte & Mika Kortelainen, 2013. "What explains the performance of students in a heterogeneous environment? Conditional efficiency estimation with continuous and discrete environmental variables," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2401-2412, June.
    7. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    8. Lee, Sauchi Stephen, 2000. "Noisy replication in skewed binary classification," Computational Statistics & Data Analysis, Elsevier, vol. 34(2), pages 165-191, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    5. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    6. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    7. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    8. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    9. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    10. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    11. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    12. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    13. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    14. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    15. Zhu, Guozhong & Vural, Gulfer, 2013. "Inter-generational effect of parental time and its policy implications," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1833-1851.
    16. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    17. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    18. Sylwester Bejger, 2024. "Machine Learning in Cartel Screening—The Case of Parallel Pricing in a Fuel Wholesale Market," Energies, MDPI, vol. 17(16), pages 1-17, August.
    19. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    20. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1318-:d:1092062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.