IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5335-d1192691.html
   My bibliography  Save this article

ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration

Author

Listed:
  • Fitsum Tariku

    (BCIT Building Science Centre of Excellence, Burnaby, BC V5G 3H2, Canada)

  • Afshin Gharib Mombeni

    (BCIT Building Science Centre of Excellence, Burnaby, BC V5G 3H2, Canada)

Abstract

The process of urbanization resulting from population growth is causing a transformation of natural landscapes into built environments, and contributing to a significant rise in air and surface temperatures in urban areas, resulting in what is known as the urban heat island (UHI). Ignoring the UHI effect and use of weather data from open fields and airport locations for energy and thermal comfort analysis can lead to over- and underestimation of heating and cooling loads, improper sizing of equipment, inefficiencies in the mechanical systems operation, and occupants’ thermal discomfort. There is a need for computationally efficient urban canopy temperature prediction models that account for the urban morphology and characteristics of the study area. This paper presents the development and application of an artificial neural network (ANN)-based method for generating hourly urban canopy temperature and local wind speed for energy simulation. It was used to predict the urban canopy temperature of a neighborhood in downtown Vancouver and the resulting building energy consumption and indoor temperature in a typical building in the area. The results showed that the UHI effect increased the total cooling energy demand by 23% and decreased the total heating energy consumption by 29%, resulting in an overall negative effect on the total energy demand of the building, which was 18% higher in the urban area. The UHI effect also increased the number of hours of indoor temperature above the cooling set point by 7.6%. The methodology can be applied to determine the urban canopy temperature of neighborhoods in different climate zones and determine the varying urban heat island effects associated with the locations.

Suggested Citation

  • Fitsum Tariku & Afshin Gharib Mombeni, 2023. "ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration," Energies, MDPI, vol. 16(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5335-:d:1192691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    2. Luis Ma. Bo-ot & Yao-Hong Wang & Che-Ming Chiang & Chi-Ming Lai, 2012. "Effects of a Green Space Layout on the Outdoor Thermal Environment at the Neighborhood Level," Energies, MDPI, vol. 5(10), pages 1-13, September.
    3. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Xu & Lushuang Zhao & Yunwei Zhang & Zhaolin Gu, 2023. "Investigation on Air Ventilation within Idealised Urban Wind Corridors and the Influence of Structural Factors with Numerical Simulations," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    2. Siavash Ghorbany & Ming Hu & Siyuan Yao & Chaoli Wang, 2024. "Towards a Sustainable Urban Future: A Comprehensive Review of Urban Heat Island Research Technologies and Machine Learning Approaches," Sustainability, MDPI, vol. 16(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    2. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    3. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    4. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    5. Sánchez-Guevara Sánchez, Carmen & Sanz Fernández, Ana & Núñez Peiró, Miguel & Gómez Muñoz, Gloria, 2020. "Energy poverty in Madrid: Data exploitation at the city and district level," Energy Policy, Elsevier, vol. 144(C).
    6. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    7. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    8. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    9. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    10. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    11. Myungjin Kim & Li Wang & Yuyu Zhou, 2021. "Spatially Varying Coefficient Models with Sign Preservation of the Coefficient Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 367-386, September.
    12. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    14. Long Pei & Patrick Schalbart & Bruno Peuportier, 2023. "Quantitative Evaluation of the Effects of Heat Island on Building Energy Simulation: A Case Study in Wuhan, China," Energies, MDPI, vol. 16(7), pages 1-23, March.
    15. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    16. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    17. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    18. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    19. Chris Boulton & Claudia Baldwin & Tony Matthews & Silvia Tavares, 2023. "Environmental Design for Urban Cooling, Access, and Safety: A Novel Approach to Auditing Outdoor Areas in Residential Aged Care Facilities," Land, MDPI, vol. 12(2), pages 1-22, February.
    20. Boccalatte, A. & Fossa, M. & Ménézo, C., 2020. "Best arrangement of BIPV surfaces for future NZEB districts while considering urban heat island effects and the reduction of reflected radiation from solar façades," Renewable Energy, Elsevier, vol. 160(C), pages 686-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5335-:d:1192691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.