IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p482-d1037560.html
   My bibliography  Save this article

Asymptotic Analysis for One-Stage Stochastic Linear Complementarity Problems and Applications

Author

Listed:
  • Shuang Lin

    (Department of Basic Courses Teaching, Dalian Polytechnic University, Dalian 116034, China)

  • Jie Zhang

    (School of Mathematics, Liaoning Normal University, Dalian 116029, China)

  • Chen Qiu

    (School of Mathematics, Liaoning Normal University, Dalian 116029, China)

Abstract

One-stage stochastic linear complementarity problem (SLCP) is a special case of a multi-stage stochastic linear complementarity problem, which has important applications in economic engineering and operations management. In this paper, we establish asymptotic analysis results of a sample-average approximation (SAA) estimator for the SLCP. The asymptotic normality analysis results for the stochastic-constrained optimization problem are extended to the SLCP model and then the conditions, which ensure the convergence in distribution of the sample-average approximation estimator for the SLCP to multivariate normal with zero mean vector and a covariance matrix, are obtained. The results obtained are finally applied for estimating the confidence region of a solution for the SLCP.

Suggested Citation

  • Shuang Lin & Jie Zhang & Chen Qiu, 2023. "Asymptotic Analysis for One-Stage Stochastic Linear Complementarity Problems and Applications," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:482-:d:1037560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan J. King & R. Tyrrell Rockafellar, 1993. "Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 148-162, February.
    2. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    3. Huifu Xu, 2010. "Sample Average Approximation Methods For A Class Of Stochastic Variational Inequality Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 103-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    2. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    3. Zhang, Jie & He, Su-xiang & Wang, Quan, 2014. "A SAA nonlinear regularization method for a stochastic extended vertical linear complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 888-897.
    4. Shu Lu & Amarjit Budhiraja, 2013. "Confidence Regions for Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 545-568, August.
    5. B. Jadamba & F. Raciti, 2015. "Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 1050-1070, June.
    6. Yong Zhao & Jin Zhang & Xinmin Yang & Gui-Hua Lin, 2017. "Expected Residual Minimization Formulation for a Class of Stochastic Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 545-566, November.
    7. Wei Ouyang & Kui Mei, 2023. "Quantitative Stability of Optimization Problems with Stochastic Constraints," Mathematics, MDPI, vol. 11(18), pages 1-13, September.
    8. Joachim Gwinner & Fabio Raciti, 2012. "Some equilibrium problems under uncertainty and random variational inequalities," Annals of Operations Research, Springer, vol. 200(1), pages 299-319, November.
    9. Xingbang Cui & Jie Sun & Liping Zhang, 2023. "On Multistage Pseudomonotone Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 363-391, October.
    10. Jie Jiang & Hailin Sun, 2023. "Monotonicity and Complexity of Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 433-460, February.
    11. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    12. Lu, Fang & Li, Sheng-jie, 2015. "Method of weighted expected residual for solving stochastic variational inequality problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 651-663.
    13. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    14. Baha Alzalg & Asma Gafour, 2023. "Convergence of a Weighted Barrier Algorithm for Stochastic Convex Quadratic Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 490-515, February.
    15. Jie Jiang & Shengjie Li, 2021. "Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 650-671, August.
    16. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    17. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    18. L. Dai & C. H. Chen & J. R. Birge, 2000. "Convergence Properties of Two-Stage Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 489-509, September.
    19. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
    20. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:482-:d:1037560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.